データ・アナリティクス入門

数字の隠れたストーリーを探る

全体像はどう把握? データを加工する際には、まずインパクト、ギャップ、トレンド、ばらつき、パターンといった視点から全体像を把握することが重要です。その上で、数字で示すのか、ビジュアル化するのか、数式を用いるのかといった手法を選択します。予め何を知りたいのかという前提を忘れず、単に平均値を取るだけでなく、ばらつきに注目して外れ値に潜むチャンスを見出す視点が必要だと感じました。 競合比較はどう見る? 自社品の売り上げや競合との比較についても、提示された数字をそのまま受け止めるだけではなく、どこにベンチマークを置くのかを意識することが求められます。売上が前年より伸びている場合でも、市場全体が拡大し、競合もその中で成長しているのであれば、そのギャップはどこにあるのかを考える癖を身に付けることが大切です。月ごとのシェアや日々の実績トレンドを、抽象的な視点と具体的なアプローチの両面から分析し、真相に迫ることが目標です。 トレンド集計の課題は? また、毎日売上トレンドを集計し、メンバーと共有しているものの、単なるトレンド情報だけではベンチマークを示すことができません。さらに、競合品のデータもタイムリーに入手できていないため比較が難しい状況でした。ピボットテーブルで集計する前のデータ収集に手間を感じ、与えられたデータベースだけで処理しようとしていた自分の意識を改め、より柔軟な視点でデータ活用に取り組む必要性を強く実感しました。

クリティカルシンキング入門

問いから始める課題解決の秘訣

正しい問いは何? 問いの立て方が変われば考える方向性も変わることを学びました。本質を捉えた問いを立てることが課題解決につながりますが、目先の課題に捉われてしまうと、その問題は解決されないまま繰り返される恐れがあります。正しい問いを立てるためには、データを活用して分解や加工を行い、イシューを特定することが重要です。私は日々、数字や情報を意識的に分解し、イシューを特定できるよう心がけていきたいと思います。 どう集客の課題? 企画営業においてもこのアプローチは常に活用できると感じています。集客に関する企画を立てる際にも、根本的な課題が何かを意識することで、適切な打ち手がより明確になると思っています。たとえば、集客が難しい場合、年齢層や性別などの複数の切り口から情報を収集し、イシューを特定したうえで打ち手を考えることで、より的確な提案が可能になると感じました。 問はどう共有する? イシューを特定するためには、どんな仕事においてもまず「問いは何か」を意識し、その問いを常に意識し続けること、そして組織内で共有することを徹底していきたいと思います。また、業務以外でも問いを立てる習慣を身につけ、イシュー特定に慣れていきたいです。イシューを特定できなければ効果的な打ち手にはつながらず、結果として課題解決にならず生産性も向上しないと感じています。ですから、イシューを特定することを第一の目標として、日々行動していきたいと思います。

マーケティング入門

顧客の声を形にするビジネスの秘訣

顧客ニーズはどう捉える? 顧客のニーズを的確に捉えることの重要性を痛感しました。たとえばある企業では、顧客の声を反映してマスクや服装といった製品を生み出し、需要不足という問題を解決することで、良い事例となっています。このように、顧客のペインポイントをゲインポイントに変換することが重要であると理解できました。また、製品のネーミングにも工夫が求められます。顧客発想で名前を考えると、商品を認知しやすく、具体的なイメージも湧きやすくなるため、顧客自身の行動を促しやすいと感じました。 自社の強みをどう活かす? さらに、企業は自社の強みを理解し、それを活かして顧客が求めるものを提供することが大切です。競争が激しく、商品や法令が厳しい中での差別化は難しいですが、改めて自社製品を選ぶ理由や、そのメリットを細かく分析していくことが必要だと考えます。また、潜在顧客については、カスタマージャーニーを実施して、新たに分析を始めることの必要性を感じました。自社の強みについても、再考する必要があると実感しています。 顧客の行動可視化の方法は? 具体的には、顧客からのアンケートを再度読み直すことが第一歩です。次回のアンケートでは、施策や欲しい情報だけでなく、「なぜ選んだのか」といった基本的な部分も問いかけたいと思います。さらに、顧客向けのインタビューや観察を通じて、顧客の行動をより可視化し、ターゲット設定の見直しを図りたいです。

クリティカルシンキング入門

正しい日本語の力を実感した学びの旅

正しい文章はどう作る? 正しい日本語という観点についてはあまり意識していませんでしたが、改めてその重要性に気づく機会となりました。誤字脱字やら抜き言葉、主語と述語の抜けや間違いといった明確なミスがある一方で、正解となる文章を定義するのは難しいとも感じています。これは慣れが必要な部分です。また、ロジックツリーもMECEと同様に、複数のパターンが考えられるため、目的に応じた適切なパターンを選定することが重要です。柱を立てる、対の概念を用いる、具体化するというプロセスは理解できましたが、その柱が本当に目的に適しているか慎重に検討することが必要だと実感しました。具体化の際には定量的な指標や第三者から見ても理解できる言葉で表現することが大切です。 技術意義は何だろう? 現在進めている新技術の実証実験プロジェクトにおいて、お客様から「この技術は何のために実施しているのか分からなくなってきた」というコメントをいただきました。このため、その技術の意味や意義、位置づけを整理する必要があります。今回学んだ内容は、まさにこの整理に役立つと感じたので、今後実践してみたいと考えています。 実験はどう進む? 今週は、新技術実証実験に関する技術の定義やその意義を、ロジックツリーとMECEを意識して整理します。来週には、お客様とともにこの整理した情報を用いて、新技術の価値やお客様のビジネスへの影響度合いを議論する予定です。

アカウンティング入門

企業の数字を読む力を磨こう

貸借対照表の役割を理解するには? 貸借対照表は、「事業を行うためにどのようにお金を使ったか、そのためにお金をどのように集めたか」を示しています。資産について「どのようにお金を使ったか」と表現されると、一瞬戸惑うかもしれませんが、確かに的を射た説明です。この感覚を、自分の中に深く刻み込むためにも、何度も繰り返し確認していきたいと思います。 負債を活用した戦略のリスクとは? 企業は負債でレバレッジをかけて売上を拡大しますが、返済能力や可能性を見誤ると大きなリスクを伴います。事業の魅力はここにありながらも、その難しさに直面します。提供価値をしっかりと実現できるか、損益計算書(P/L)や貸借対照表(B/S)で数字をチェックしなければなりません。 自社B/Sを活かす方法を模索する 自社のB/Sを理解した上で、どのように貢献できるかを考慮しつつ、売上を上げ、利益を増やし、売上の回収タイミングを設計していきたいと思います。とはいえ、多くの他部署があるため、自部署だけの情報を把握するのは難しいこともあり、どんな情報が必要かを見つけるプロセスも必須です。 競合とのB/S比較の重要性とは? 自社と競合他社のB/Sを確認し、見るだけで終わらせずに書き出して比較してみたいです。同じビジネスモデルでも、資金繰りの違いによって販売戦略に大きな差が出ることがあります。違いを認識することから始めてみたいです。

アカウンティング入門

提供価値を見つめ直す学び

提供価値って何ですか? このパートでは、「提供価値とは何か」について深く理解する重要性を再認識しました。単に商品やサービス自体のクオリティだけでなく、店内の空間、スタッフの接客、ウェブサイトや広告といった各要素が結びついたトータルな価値として捉える視点が身についたと感じます。また、その価値には、金銭的な動きが絡むことも理解することができました。 事業の違いは何? まず、当社は異なるビジネスモデルに基づく複数の事業を展開していますが、それぞれの違いや特徴が十分に説明されていないため、外部から誤解や認識不足が生じていると考えます。これらの課題を解消するために、各事業の提供価値を改めて整理し、その上で金銭の動きも正確に把握することが、経営管理の改善や認識不足の解消につながると感じました。 価値はどう伝える? また、当社の業務内容やビジネスモデルは、外部の専門家にとっても理解が難しい部分があるため、会社全体や各事業部ごとの提供価値を正確に伝える努力が必要です。そのため、さまざまな切り口から価値の側面を洗い出すことから取り組むべきだと思いました。具体例として、あるカフェの場合を考えると、コーヒーの質の高さというコアバリューのみならず、内装、スタッフ、ウェブサイト、情報発信の質、さらには価格設定など、トータルな価値として自社の提供価値を広く捉えることが重要であると感じました。

クリティカルシンキング入門

日本語力アップとピラミッド活用術

なぜ印象に残った? 私が特に印象に残った学びは二つあります。 日本語の要点は? 一つ目は、日本語を正しく使うことの重要性です。これまで私は、主語を明確にせず述語もうまく対応させずに説明してきたことを痛感しました。特に「自分がサボった分は、聞いている側がツケを払っている」という講師の説明が心に響きました。今後は、主語と述語がきちんと揃っているかどうかに注意を払いたいと思います。 ピラミッドの秘訣は? もう一つは、ピラミッドストラクチャーの作成方法です。まずメインメッセージを設定した後、それを支える理由づけをまとめ、さらにそれぞれを深掘りしていく流れを理解しました。特に、各レイヤーにおいて情報の粒度を揃えることが重要ですが、これが非常に難しいと感じています。今後はこの点に焦点を当てて学んでいきたいです。 報告の伝え方は? 他部署への報告業務においては、調達コストに関して発生した現象を正しく説明し、ピラミッドストラクチャーを使って要因を明確にし、端的に説明することを心がけます。 新規進行はどう? また、新規プロジェクトの進行では、参加者に対して目的や手段を説明する際、日本語の選び方に注意し、主語と述語を正確に使用します。さまざまな意見をまとめる業務では、ピラミッドストラクチャーを用いることで、多様な意見をグループ化することに努めたいと思います。

戦略思考入門

実務革新を支える分析フレームワークの力

フレームワークはどう見る? 複数のビジネスフレームワークの概要や活用方法を学ぶ中で、各フレームワークを実務にどう活かすかについて深く考える機会となりました。自分自身の思考も大切ですが、過去の経験に頼ると見落としがちな視点もあるため、フレームワークを通じて多角的に物事を分析することの重要性を実感しています。 3C分析はどう捉える? 現在、3C分析に取り組んでいますが、特に他社の分析が難しいと感じています。得られる情報は表面的な部分も多く、より具体的かつ同じ粒度で市場、顧客、自社を捉える必要があると考えています。今後は、可能な範囲で深く掘り下げることで、より実践的な分析ができるよう努めたいと思います。 SWOTの見直しは? 一方で、SWOT分析については、本当にそれが強みであるのか、または見えていない弱みがないかを丁寧に検討していくことが肝心だと感じています。社内にとどまることで陥りがちな固定観念にとらわれず、常識を見直して深堀りを進めることが求められると考えています。 今後の対策はどう? これからは、各フレームワークを正しく理解し活用することを目指します。特に3C分析では、3つの要素を同じレベルの粒度で徹底的に分析し、その結果については上司とも共有し、認識のズレを解消することで、より実務に即した取り組みを進めていきたいと思います。

クリティカルシンキング入門

「本質的な問いが課題解決のカギでした」

本質的な問いとは何か? これまで、適切な課題を見つけることが難しいと感じていました。しかし、今回、「本質的な問いの見つけ方」を理解することで、これまで難しいと感じていたイシューの見つけ方が分かるようになりました。本質的な「問い」を見つけるためには、「問いから始めること」が重要だということを改めて学びました。かつての著名な方々が「答えを見つけるよりも問いを見つける方が重要」と述べた理由に深く納得しました。 問題解決には問い共有を 何かを提案したり、物事を解決する際にはまず問いから入り、その問いを心に留めておくことが重要です。問題解決や課題提案時には、まず問いを意識し、その問いを明確にする。そして、問いをチーム内で共有し、質の高い問題解決につなげていきたいと思います。 問いを意識するシーンとは? また、スライド作成時や社内外のミーティング、報連相の場面など、さまざまなシーンで、「問い」を意識すれば、無駄のないスムーズな情報のやり取りができると感じました。 問いを習慣化するには? 日頃からまずは「問い」を意識して物事を見ていく、感じていくことで、これを習慣化させたいと思います。日常の中で様々な選択が求められる中で、その都度「今ここで答えを出すべき問い」を明確にし、チーム内で共有することを心掛けていきたいです。

データ・アナリティクス入門

分析で見つける未知の可能性

分析開始の目的は? 実際に分析を始める前に、その分析の目的を明確にすることが重要です。目的が曖昧では、分析自体の意味がなくなります。分析の本質は比較にあります。比較を行わなければ、物事の良否を判断することはできませんし、絶対的に良いものや悪いものというものも存在しません。意思決定が相対的な比較によって行われると考えると、分析(比較)の重要性が一層理解されます。 比較対象の選び方は? そのためには、適切な比較対象を選ぶことが必要です。しかし、すべての情報を持っているわけではなく、自分の理解が正しいかもわからないため、この作業は現実としては難しいこともあります。 解決すべき課題は? 分析を通じて解決したい課題は多岐にわたります。たとえば、効果的な授業や学習方法を知りたいとき、また生徒募集活動をどの地域で積極的に行うべきか、生徒や保護者の学校への満足度、勤務校の強みと弱みの分析などです。これらの目的を達成するために、適切な分析を行うことが望ましいです。 どんなデータ収集? まずは、各目的に応じたデータ収集から始めたいと考えています。生徒の成績推移や大学合格実績といった定量分析に加え、アンケートやインタビュー(個人・集団)による定性分析も通じて、データを集め、その中から中核となる特質を抽出するようにしたいです。

データ・アナリティクス入門

分布も味方に!データ分析の学び

平均値と分布への疑問は? 代表値を用いた分析手法が有効であると実感しました。たとえば、平均値(単純平均)を用いることで全体像を把握できる一方、データがどの程度集約されているのか、またはばらついているのかを判断することは難しいため、平均値とデータ分布の両面から検証する重要性を学びました。 データ分布の検証は? データ分布を確認する手法としては、標準偏差が挙げられます。標準偏差の値と集計結果に大差がなければ、分析の正確性が高まると感じました。また、分析内容に応じて単純平均、加重平均、幾何平均、中央値など様々な代表値を使い分けることで、異なる角度からの洞察が可能になることに気づきました。 仮説検証の進め方は? さらに、データ分析は比較を前提としているため、問いやゴールを明確に定め、仮説の設定、データ収集、仮説検証というプロセスを徹底することが大切だと学びました。これを繰り返すことで、より精度の高い結論に到達できると実感しました。 実践例の応用は? また、実践例として、交通系ICカードの決済実績を分析する際には、切り口別に代表値や分布の状況を組み合わせる手法に取り組みたいと感じました。ヒストグラムなどを用いてビジュアル化することで、報告相手にわかりやすく情報を伝える工夫が、今後の分析の質向上につながると考えています。

データ・アナリティクス入門

データ分析に固執しない学びの本質

効果検証を改善するには? 今週の講義内容は、すでに実践していることをさらにブラッシュアップして継続する必要があると感じました。特に効果検証については、ノイズを排除しきれずにABテスト自体が難しい場合や、施策の実施数が多く、全ての分析を物理的に行うことが困難な場合があります。 デジタル時代のデータ分析とは? デジタル領域では、質よりもスピードが重要な場面が多くありますので、完璧なデータ分析に固執しすぎないことも心掛けたいです。データ分析はあくまで結果を出すための一つの手段に過ぎず、それ自体を目的としないことが大切だと再認識しました。 仮説思考を磨くために何が必要か? また、仮説思考を鍛えるためには、思考力を磨くことが最も重要だと感じました。情報を集めたり事象を分析しているだけでは、思考の精度は上がりません。本当に必要な情報を見極めるために、何のために情報を集めるのかを自分の頭で考えるトレーニングが必要です。 行動で成果を生み出す方法は? さらに、答えを持っている人に対して自分の仮説を試してみることも大事です。不正解でも良いので、アウトプットする機会を増やし、トライアンドエラーを繰り返すことが重要です。成果は行動することでしか生み出せないため、とにかく積極的にアクションを起こすことが求められます。

「情報 × 難しい」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right