戦略思考入門

取捨選択で磨く未来の軸

優先基準は何だろう? 今週のテーマは「取捨選択」であり、優先順位を上げるべきものや見送るべきものを判断するためには、情報収集と分析が不可欠であると実感しました。その上で、次に何を重視するかという軸を明確にすることも重要です。また、ビジネス環境や自社の状況は刻々と変わるため、定めた軸に沿って定期的に状況を見直し、ヘルスチェックを行いながら方針を更新する必要があると感じました。 AI進化の影響は? さらに、生成AIやAIエージェントの進化に伴い、自社事業への影響が大きくなっている現状を踏まえると、リソースの配分や断念すべき部分の判断を迅速に行う必要があります。その上で、部下への指示や壁打ちの場面でもこれらのツールを効果的に活用できると感じました。世間のブームや期待感に流されることなく、冷静な情報収集を基に自部署の方向性を見定めることが重要です。 現状の課題は何? 現状では、自部署の課題に注目しすぎて、モグラ叩き的に個別の対策を講じている状況です。そこで、周囲の環境や社内の状況を改めて整理し、どの事業に注力すべきかを明確にすることが求められます。また、慣例的に続けている効果や効率が低い業務を見直し、効率化や中止の判断を行うべきだと考えています。

データ・アナリティクス入門

ゴール重視からの脱却と新たな挑戦

場合に応じたゴール設定の重要性 業務において、MECE(Mutually Exclusive, Collectively Exhaustive)の原則は理解していたが、実際にはゴールを重視し過ぎていたことに気づかされました。また、What Where Why Howといったフレームワークも頭では理解していたものの、実際の活用がうまくできていなかったと反省しました。これにより、もれなく分析する難しさを改めて認識しました。 漏れのない分析方法とは? 私は業務プロセスの変革や改善のアセスメント、プロジェクト推進を担当しています。そのため、網羅的な影響の確認と、漏れのない分析が重要です。特に抽出する方法については慎重に整理し、誤ったアウトプットを防ぐことが必要であると再認識しました。 ヒアリングシートをどう改善する? ヒアリングシートについては、ロジックツリー化してテンプレートとして使用していましたが、これを見直すことにしました。具体的には、粒度の確認を行いながら、シートを整理することが重要だと考えています。そして、現状、あるべき姿、理想とする姿を正確に区分けすることで、段階的なスケジュールの精度を高め、プロジェクト推進につなげたいと思います。

アカウンティング入門

仲間と共に克服する会計の壁

仲間に安心を感じる? グループディスカッションでは、自分と同じような不安を感じている仲間がいることを知り、心強く感じました。 財務三表の意味は? 財務三表について学ぶことで、事業活動全体を定量的に評価できるツールとしての有用性を実感しました。P/Lはどれだけ利益を上げたか、B/Sはお金の使い方、そしてC/Fは現金の増減を示しており、これらを読み解くことが経営判断に大いに役立つと感じています。 経営知識の必要性は? 現状、自社の財務諸表を直接業務に活用しているわけではありませんが、経営状況を理解し、将来的には上位の立場でチームへ説明できるように、また経営判断に繋げられるよう、着実に知識を積み重ねていきたいと思います。また、自分が関与しているプロジェクトがどのようにP/Lに影響しているのかを考えてみることも、今後の課題ととらえています。 講義内容はどう活かす? さらに、講義で得た知識を確実なものにするため、自分なりに簡潔で分かりやすく整理し、アウトプットするよう努めています。会計については全くの初心者で、講義についていけるか不安に感じていますが、皆さんの意見やコメントを参考にしながら、これからしっかりと学んでいきたいと思います。

データ・アナリティクス入門

実践!比較で開く分析の扉

分析本質はどう捉える? 「分析の本質は比較」というテーマから、これまで漠然と捉えていた「分析」が、実は「比較」を前提として成り立っていることを再認識しました。比較対象が存在しなければ、意味のある分析は行えないという考え方に気づかされました。 課題整理はできてる? 現状の課題として、収集したデータがそのままに放置され、分析に必要な比較対象が適切に選定されていない点、そして分析の目的が明確になっていない点が挙げられます。これらの課題を意識し、今後の業務改善に活かしていきたいと思います。 数値の変化はどうなってる? コミュニティ運営では、入会や退会の集計を実施していますが、リソースの問題から、十分な分析には至っていませんでした。しかし、年単位の集計により、昨年や一昨年と比較してどのような数値になっているのか、またその数値に影響している要因は何かといった点を把握できると実感しています。 改善策は何だろう? 今後は、分析の目的を明確にし、必要なデータ収集に努めるとともに、入会時および退会時のアンケート項目の見直しを実施します。そして、毎月の施策と入退会の関連性を紐付けることで、より実践的な分析を展開していきたいと考えています。

データ・アナリティクス入門

数値とABテストで見極める新戦略

数値化の効果はどう? 実践演習では、複数案を選択する際に「数値化」する手法を学びました。自分なりに言語化して記載する中で、他者に説明する際にもこの数値化が有効であると実感しました。 ABテストって何? また、動画学習ではABテストについて学びました。これまでなんとなく比較手法を採用していたものの、今後は期間や状況を意識し、差異の少ない環境で比較する重要性を再確認しました。 商品の魅力は伝え方次第? 業務面では、スーパーマーケット等へ食品を流通させる中で、商品の訴求ポイントが多数存在するため、どの情報をどのように伝えるか迷うことが多くあります。例えば、ブランドの特徴や原料産地、有機、減塩、糖質オフ、カロリーなど、様々な訴求要素がある中、限られた紙面スペースやウェブバナーでどの情報を選ぶか判断に苦慮しています。そこで、今回学んだABテストと数値化の手法を活用し、客観的に効果の高い訴求方法を選定していきたいと考えています。 評価方法はどう設定? なお、数値化にあたっては、個人の考えやバイアスが影響しやすい面もあり、できるだけ公平かつ客観的に評価できる方法やコツがあれば、今後の業務改善に役立てたいと思います。

データ・アナリティクス入門

分析で見える!自分の可能性を探る旅

分析目的をどう定める? まず、分析を行うためには、その目的を明確にすることが大切です。分析の核心は、物事を比較することにあります。適切な比較対象を選ぶ際には、「apple to apple」を意識し、時には目に見えないデータとも比較することが求められます。仮説を立てた上で、分析を進めることが重要です。また、分析結果を可視化する際には、その目的を常に念頭に置くことが求められます。 新しい業務の分析に必要な視点は? 新しい業務に取り組む際には、市場規模や競合他社、収支計画など、多岐にわたるデータを使用し、取り組む価値があるかどうかを分析します。コンサルティングなどの導入時においては、従来の定性的な説明に加え、コスト、業務効率化、収益への影響についてデータに基づく分析を行い、より説得力のある説明が求められます。 仕事の本質をどう理解する? 次に、「自分が何をしたいのか」を明確にし、自身の仕事の本質を正確に理解します。その上で、なぜ分析が必要であるのかを整理します。分析を始める前に仮説を立て、その仮説を検証するために必要なデータを収集します。最終的には、分析結果を適切に可視化し、周囲を納得させられるようにすることが重要です。

マーケティング入門

広がる視野と本音の引き出し術

コロナの影響は? コロナ期間の事例から、視野を広げることの大切さを改めて感じました。ある企業が迅速に開発力を発揮した事例を通して、自社の強みや、エンドユーザーの潜在的なニーズに気づく機会があることを実感しました。 ヒアリングでのコツは? また、雑談などでリラックスしたムードを作りながらヒアリングを行うと、相手の本音を引き出しやすくなるという点も印象的でした。 ペインとゲインの違いは? さらに、ヒアリングにおいてはペインポイントとゲインポイントを階層で意識して分けることで、解像度の高い情報が得られ、より具体的な課題把握につながると感じました。 価格以外に注目? 加えて、競争入札の提案においては、どうしても価格が重視されがちですが、エンドユーザーや販売法人それぞれが抱える困りごと、いわゆるペインポイントを見つけ出し、明確に言語化することが重要だと考えます。日々の業務では、常にペインポイントを意識し、提案内容にそれが反映されているか立ち返りながら進めることが大切だと感じました。 探り方に秘密は? 最後に、ペインポイントの探り方について、具体的なコツや経験を共有いただけるとさらに学びが深まると考えています。

戦略思考入門

体験から導くブランドの秘訣

本質はどう理解する? フレームワークやビジネスの法則は、一見すると万能に感じられる部分もありますが、例外や適用の難しい場面があると感じています。本質を理解するためには、単に表面的な知識を得るのではなく、自分自身で実際に試し、体験することが重要だと実感しました。 現業にどう活かす? 現業では商品生産に直接関与していないため、自分の業務にそのまま当てはめるのは難しいと感じつつも、担当しているブランディング業務においては、同じ考え方が応用できるのではないかと思います。企業理念を深く理解している社員が育つことで、部署が変わった際にも周囲に良い影響を与え、企業の方針に沿った業務遂行が可能になると考えています。また、ブランディングの認知度や信頼性が向上すれば、新たな事業領域に進出する際、広告コストの削減や新規顧客獲得のハードルを下げる効果も期待できるでしょう。 人材活用はどう? 今後は、人材活用による範囲の経済性について、部署が異なった場合にどのスキルや行動が役立つのか、具体的な事例を探りたいと思います。自社の人材の核となるキーワードを見出し、企業理念の浸透がもたらす効果を明確に説明できるよう努めていきたいです。

データ・アナリティクス入門

実践が教える仮説検証の極意

検証手法は有効? 問題原因を明らかにし、仮説検証の手法を学びました。A/Bテストを活用して施策の比較を行い、検証条件を可能な限り統一することの重要性を実感しました。例えば、AM・PMや平日・休日といった環境の違いは、検証対象以外の要素が判断に影響を及ぼす可能性があるため、広告などではランダム表示を取り入れることで正確な評価ができると考えています。 現場実践と課題は? 業務の現場では、店舗出店など莫大な費用と時間を要するケースが多く、テスト環境の確保が難しいのが現状です。しかし、勤務状況や労務上の課題に関しては、実践の機会が得やすいため、身近な課題に対して継続的な取り組みを重ね、自身の中でフレームワークを構築していくことが重要だと思いました。 日々の計画はどう? また、仕事に限らず、収入と出費などの身近なテーマでも問題意識を持つことが大切です。まだ十分にMECEの視点で物事を分析できていないため、さまざまなケースにおける要素分析を行い、知識をストックしておく必要があると感じました。さらに、全体の時間軸を意識して日々の業務計画に落とし込むことで、突発的な対応を極力減らしていきたいと考えています。

アカウンティング入門

数字の裏に潜む物語

数字の裏に何が? オリエンタルランドの事例を通じ、事業活動からP/LやB/Sを読み解く手順を学びました。単に数字だけを見るのではなく、事業の背景にある仮説、つまり売上や売上原価、資産の構造などを意識して数字に向き合うことで、より深い理解が得られると実感しました。特に、売上原価に人件費や減価償却費が含まれる場合や、固定資産の規模と償却の進み具合が企業の状況に大きな影響を与える点が印象に残りました。こうした視点は、他社の財務分析だけでなく自社の経営状態を理解する上でも非常に有効だと感じています。 今後はどう戦略する? 今後は、業務や会議で示されるP/LやB/Sの数値に対して、背景となる事業活動や構造を必ず仮説として考える習慣を身につけたいと思います。決算資料や新聞記事を読む際にも、数字の背後にあるストーリーを意識して読み解くことで、より実践的な理解が深まると考えています。特に、減価償却や資産構成の変化は企業の長期戦略を反映するため、注意深く注視していきたいです。また、自社の予算や投資計画に関わる際には、本講座で学んだ「事業活動→数値」という流れを用いて、説得力のある提案や説明ができるよう実践していく所存です。

アカウンティング入門

数字で見える経営の現実

無借金経営の何が魅力? 無借金経営のメリットとデメリットがイメージでき、事業を継続するために売上を伸ばす際は、負債と純資産のバランスを考慮した適切な投資が必要であると理解できました。また、業界やビジネス規模によってバランスシート(BS)の各項目のバランスが異なることがわかり、各社のBSを分析する前には、まず業界の特徴を把握する必要があると感じました。 BSと仕事の関連は? 現在の業務において直接活用する場面は少ないものの、自分の仕事が結果的にBSのどの部分(たとえば固定資産管理や在庫保有など)に関連しているかを意識してみたいと思います。さらに、所属する業界の特徴に基づいた分析を続け、他社との比較ができるようにスキルを高めたいと考えています。 業界特性はどんな? 業界によって固定資産と流動資産の割合や、負債と純資産の割合が大きく異なるため、まずは対象企業が属する業界の傾向を確認した上で、その企業のBSを見直し、特徴を捉えたいと考えています。また、BSの結果と損益計算書(PL)の結果との関連性、特に人件費などPLには反映されるがBSには現れにくい影響についても、より深く学んでいきたいと思いました。

データ・アナリティクス入門

多角的な視点で挑む数字の謎解き

なぜ一案に固執しない? まず、今回最も学んだのは、あらゆる可能性を考慮し、単一の仮説に固執しない分析の大切さです。たとえ一つの数字が上下したとしても、その変動の要因を丹念に探ることが、次の一手を効果的に打つためには必要不可欠であると感じました。 どうして検証が偏った? 業務上、多くの数字を扱う中で、変化の原因を憶測だけで判断してしまっていたことに気づきました。実際、決め打ちした仮説に基づく検証に偏り、他の可能性を最初から除外していたため、十分な検証ができない場合がありました。今後は、ある要因が数字の変動に影響していると考えた際に、同じ要因が別の状況でも現れているかどうかを比較し、分析の基本である比較の原則に立ち返って検証していきたいと考えます。 なぜ多角的に議論する? さらに、仮説を立てた後すぐにデータ分析に入るのではなく、他に考えられる仮説や視点がないかあらゆる角度から検討することが重要だと再認識しました。特に、一人では気づかない視点も存在するはずなので、複数人でデータを見比べる必要性を感じています。そのため、早速4月からは、より多角的に意見を交わせる組織体制に変更できるよう動いています。
AIコーチング導線バナー

「業務 × 影響」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right