データ・アナリティクス入門

結果に響くMECE学びのヒント

結果を重視する理由は? 問題解決にあたっては、要因ではなく結果から考える姿勢が大切であると学びました。また、ロジックツリーを作成する際、MECE(漏れなく、ダブりなく)を意識することの重要性も実感しました。特に、厳密さ自体を目的とせず、第3階層程度で異なる要素を加えても構わないという点は、意外性があり印象に残りました。 メール分析のポイントは? 顧客向けキャンペーンメールの分析では、属性をMECEに分類することで、有意差のある項目を見つけ出すことが可能となります。これにより、意味のある仮説が立てられ、有意な差を検証できるA/Bテストの実施につながります。 属性戦略はどんな風に? 今後は、各属性がどのような方法で、どれほどの期間で入手可能かを確認した上で、MECEに分類し、ロジックツリーで整理することが必要だと考えています。このプロセスを通じ、特に注力すべき属性を明確にし、それぞれに応じたメール配信の戦略へと展開していきたいと思います。

アカウンティング入門

営業利益を深掘り!企業分析の新視点

営業利益は何がわかる? P/Lの営業利益についての理解が深まりました。特に、同様のビジネスを行いながらも異なる戦略をとる二つの事例を通じて、どのようなコストがかかるのか、そしてその実現に必要な視点について考えることができました。安易に費用を下げる戦略が危険であるという視点は大きな学びとなりました。 企業選定はどうするの? まず、提携先企業の選定にあたっては、P/Lを読むことが重要だと感じています。異なる企業の比較を通じて、各企業の強みや弱み、そして狙いを明確にし、企業分析に活用したいと考えています。 分析スピードはどう向上? また、チームメンバーとともに、企業分析業務にP/Lの知識を生かすことで、企業間比較のアウトプットスピードを向上させたいと思います。同一業界内の企業を比較することで、自らの企業分析スキルを深めていく計画です。特に、販管費がどのように使われているのか、企業ごとに異なる点を詳しく理解できるようになりたいと考えています。

クリティカルシンキング入門

クリティカルシンキングで仕事を変える

クリティカルシンキングって? クリティカルシンキングの必要性とその基本姿勢について改めて確認しました。業務においては、新しいアイデアの着想に加え、コミュニケーションの円滑化に寄与する効果があることを理解しました。基本姿勢としては、常に目的を意識することが重要です。 説得と意思決定は? 特に、説得や意思決定の場面でこの効果をうまく発揮したいと考えています。説得においては、相手や状況、内容によって異なるため、理屈だけでは通じないこともありますが、理屈を成り立たせることは重要です。意思決定では特に理屈が重視されるため、業務において活用していきたいと思います。 目的意識はどうする? 常に目的を意識し、なぜそのような結果になるのかを問い続けます。結果を得た際には、短期的な視点と長期的な視点を持ち、観点を変えても結論が変わらないかを確認します。このような方法で、論理の破綻や欠陥がないかを確認しながら意思決定を行いたいと考えています。

データ・アナリティクス入門

多角的視野で見るデータの魅力

仮説はどう広げる? 他部署の課題解決におけるデータ分析では、検討すべき切り口が多数存在することを意識し、決めつけることなく幅広い仮説を立てることが重要です。データを俯瞰的に捉え、各特性に合わせた代表値を用いながら、偏らない分析を心がけています。 比較軸はどう選ぶ? また、データ分析は比較を軸に、代表値とばらつきを見ることが基本です。集めた関連データから正確な傾向を把握し、単一の視点に陥らないよう、複数の見方を試みています。 分かりやすく伝える? さらに、分析結果を相手に伝えるためには、理解しやすい可視化が欠かせません。それぞれの人が異なる意見や感じ方を持つことから、相手の立場を尊重しながら意見を交えた説明を心がけています。 経験は視野を広げる? 今まで参加したグループワークや講義での交流を通じ、データの見方や可視化の手法は多様であると実感しました。その経験をもとに、柔軟な視点で課題に取り組むことができています。

データ・アナリティクス入門

比較のレパートリーを増やす意味

分析の目的は何か? 人によって着眼点が大きく異なるため、自分が分析したい目的や伝えたい相手の視点に沿った比較対象を見つけることが非常に重要であると学びました。受講前は、分析手法やデータ収集、整理が重要と考えていましたが、実際には目的設定や比較軸の決定がより重要であると感じました。 営業での活かし方は? この知識は、他者との提案時の競合価格比較や、営業時の他社比較資料の作成に役立つと考えています。特に営業現場では、価格以外の定量的な部分でどれだけ差異をつけられるかが非常に大切です。このような場面で活用していきたいと思います。 比較軸をどう増やす? まずは比較軸のレパートリーを増やすことを目指します。今回の講座で学んだ、特定条件の有無による比較に加え、他の方の意見や視点を積極的に取り入れ、より多くの軸を自分の中に取り込んでいきたいです。そうして得た軸を活用し、より目的に合ったものを選定できるよう努めていきます。

データ・アナリティクス入門

数字の裏に眠る真実を探る

定量分析の意義とは? 定量的に比較できる状態で物事を分析する大切さを実感しました。特に、MECEやロジックツリーといった手法は、情報を漏れや重複なく整理し、階層ごとに把握するのに非常に有用で、正確な分析の基盤となると学びました。 原因背後の要因は? また、従業員の不満などの現象が発生した際、単に直接的な原因と結びつけるのではなく、その背景にある複数の要因を整理することが重要だと考えるようになりました。こうしたアプローチは、複雑な要素が絡み合う状況において、分析の精度を高める上で大いに役立つと思います。 分析の共通点捉える? さらに、人に関する分析の場合も、複数の要素が関わるため、情報が見落とされたり重複したりする恐れがあります。そこで、今回学んだ手法を活用し、分析対象を構成する各要素に注目することで、一見異なる事象にも共通点を見いだしたり、特定の性質に偏っていることに気づけるよう努めたいと感じています。

クリティカルシンキング入門

整理がカギ!効果的な伝え方のコツ

頭の中の整理法は? 頭の中で考えていることをそのままアウトプットする前に、まずは整理して組み立てることが重要だと学びました。話す順番や理由を順序立てて伝えることが、情報を効果的に伝える鍵です。加えて、根拠については複数の視点から考え、それらを対比させることも必要です。 学びを現場でどう活かす? 上司への説明・相談や顧客への提案に、この学びを活用できると感じました。学んだ理論や視点を活かし、伝えたいことやその根拠を分解・整理して伝えることで、自身の意見が採用される確率を高め、時間の短縮も図りたいと思います。 ロジックツリーの活用法 具体的な方法として、上司への説明や相談、顧客への提案の際にはロジックツリーを作り、整理してから話す時間を取ることにします。メールを送る際も、送信前に相手にとって伝わりやすい内容になっているか確認し、返信内容が期待と異なる場合は内容を見返す時間を設けるようにしたいと思います。

データ・アナリティクス入門

A/Bテストで売上向上へ、新たな一歩

仮説検証の重要性を再確認 段階を踏んで仮説検証を進める重要性を改めて認識しました。また、A/Bテストという手法についてこれまで全く知らなかったため、新しい分析方法として今後積極的に活用したいと考えています。 A/Bテストの効果的な活用法は? 売上向上の施策に対しても、効果検証としてA/Bテストを用いてみたいと思います。これまで効果検証自体は実施していましたが、異なる施策を同時に行ったことはありませんでした。今後は実施できる事案を含め、慎重に検討していく予定です。 情報共有と承認のステップ まず、1か月以内に従来の施策とA/Bテストによる効果検証の違い、メリット・デメリットに関して部長会で情報共有を行う予定です。その際、A/Bテストが実施できそうな事案についても紹介し、従来法では得られない効果まで説明します。実施に対する承認を得た後は、来期の1Q内に実務担当者と協力し、テストを実施する予定です。

クリティカルシンキング入門

データ分析が変わる!MECEの魅力発見

データ分析は何が肝心? データを分析する際、「分解」する視点や切り口によって得られる情報が大きく異なることに気づきました。表面的な情報で安易に判断せず、多角的な視点からデータを分析し、十分に検証することの重要性を認識することができました。 要因の背景はどう検証? たとえば、離職率の原因を調査する際には、年齢や勤続年数、部署、職位などの要素をMECEに分けて分析することで、特定の要因や傾向を見つけやすくなります。さらに、背景や理由を深く掘り下げることで、適切な予防策を講じることが可能になると考えています。 分解で見えているものは? まずは、自分自身でデータを加工・分解することで、データ分析に慣れていきたいと思います。データを扱う際にはMECEを意識し、さまざまな視点から分析を行うことを心がけます。また、そこから導き出した仮説については、他の視点からも確からしいかを検証する姿勢を持ちたいと考えています。

クリティカルシンキング入門

マーケティングの基本から新視点を得る充実の学び

ナノ単科で得られた知識 受講した「ナノ単科」で得た知識は非常に有益でした。特に、マーケティングの基本的な概念を再確認しながら新しい視点も得ることができました。このコースの内容は、実務に直結する具体的なケーススタディを豊富に含んでおり、理解しやすかったです。 講師の説明に学ぶ 講師の説明は明瞭かつ簡潔で、用語の使用も適切でした。また、同じ情報を異なる角度から説明することで、理解を深めることができました。特に印象に残ったのは、消費者心理に関する部分で、これまで気付かなかった新たなマーケティング手法を学びました。 実務に生かすためには? 全体的に、学習の構造と流れが論理的に整理されており、読者が内容を順序立てて理解しやすいものでした。無駄な言葉が省かれ、具体的な事例を交えて解説されているため、情報が非常に具体的で理解しやすかったです。今後も、実務において本コースで学んだ知識を活用していきたいと思います。

データ・アナリティクス入門

平均の壁を越える、新指標の挑戦

課題はなぜ難しかった? 前週に比べ、今回の課題は難易度が上がっており、理解するまでにやや時間がかかりました。これまでは平均値を中心に分析していましたが、今回は単純平均、加重平均、幾何平均、中央値、標準偏差といった各指標を活用することで、より正確な分析に結びつけることができると感じました。 営業データの見直しはどうする? 業務では営業関連の数字を扱う機会が多いため、従来は一律の平均値を用いて前年度との比較を行っていました。しかし、さまざまな方法を試すことで、異なる角度からデータを分析できるのではないかという可能性を感じています。 新手法の試行錯誤は必要? これからは、どのデータにどの指標を適用するかを十分に検討した上で、目的に合わせたデータの取得と分析に取り組んでいきたいと思います。新しい手法に慣れるまで試行錯誤はあるかもしれませんが、自分にとっての最適な分析方法を見つけ出すことを目指します。

クリティカルシンキング入門

視点を変える分析で得た新たな発見

最適な分解の方法は? 分解の切り口によって異なる視点が得られることを実感しました。MECEには主に3つの種類があり、無駄と重複を避けるためにはいきなり細かく分けずに進めることが有効であると学びました。階層別、変数分解、プロセス分解を試し、それぞれの分析の対象に合わせた適切な方法を選ぶことが重要です。 医薬品の使われ方は? 自社が取り扱う医薬品の使用傾向を把握する際にも応用できると感じました。患者層の理解に加えて、別の薬剤を選択する医師の傾向も調査すると、効果的な対策が立てやすくなるのではないかと思います。 データ検証はどうする? また、毎週の社内ミーティングでは、それまで試したことのない切り口でデータを分析してみます。これまでのデータも同じ切り口で分析可能かを検討し、社内メンバーと重複なく実行できているか確認します。得られた結果から仮説を立て、それに基づいた活動を行い、次週に検証していきます。

「異なる」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right