マーケティング入門

ポジショニングの力でターゲットを引き寄せる学び

ポジショニングの重要性を学ぶ 商品戦略を考える上で、ポジショニングの重要性を学びました。具体例として、ワークマンやポッキーの事例が挙げられます。これらの企業は、商品自体に変更を加えず、ターゲットに対する価値の整理を行うことで、ヒット商品を生み出しました。これにより、新商品を考えることが必ずしも最適解ではないと理解しました。 新たな価値提案の方法は? 我が社においても、既存の商品や事業に対して、新製品の開発や全く異なるセグメントの検討を急ぐのではなく、訴求ポイントを整理することで新たな価値を顧客に提案できると考えます。 差別化マップで見える化する 具体的には、まず自社の製品の特徴を洗い出し、顧客のニーズを整理した上で、顧客に訴求するポイントを明確にします。その後、ライバルとの差別化を図るため、差が明確に伝わるポジショニングマップを作成することが重要です。

データ・アナリティクス入門

問題解決と最適化に役立つ具体的手法を学ぶ

問題解決の順序がカギ? 問題解決のプロセスについて、「What、Where、Why、How」の順に進めることの重要性を再確認しました。問題理解と適切な対策を講じるためには、なぜなぜ分析を行い、真の原因を見つけ出すことが不可欠です。このプロセスは、提案時の逸注分析やプロジェクトのトラブル、営業活動におけるクレーム対応などの場面で活用できます。 A/BテストでCROを最適化するには? また、A/BテストがWebマーケティングにおけるCRO(コンバージョン率最適化)の手法の一つとして有効であることを学びました。この手法は事業プランの策定時にも有効です。具体的には、異なる案を用意して比較し、優れた点を組み合わせてブラッシュアップしていく方法です。マーケットプランにおいても、自社案と協業先の案を出し合い、検証や補完を行うことで、より確実なプランを作成することができます。

データ・アナリティクス入門

ステップで変わる!問題解決力の磨き方

ステップを踏んで考える重要性 分析する際には、大きな点だけに焦点を当てず、ステップを踏んで考えることが重要です。ロジックツリーを活用することで、大きな問題を細分化して俯瞰できます。この手法により、自分だけでなく他の人も問題点を理解しやすくなり、様々な角度から物事を捉えられるようになるでしょう。 「なぜ」にとらわれない方法とは? 「なぜ」に注目しがちですが、大きな問題を細分化して捉えることで、複数の解決策を見つけることが可能です。ビッグデータの中から、どの数字を分析対象にするかを目的から逆算して決定することが必要です。 ビッグデータ分析の始め方 まずは、ビッグデータを理解しましょう。そこから目的を定め、分析すべき数字を選びます。ロジックツリーを利用して異なる方向からのアプローチも試みると、違う視点から全体を見渡し、新たな発見が得られるかもしれません。

クリティカルシンキング入門

分析の視点で新たな発見を振り返る

分析における多角的視点の必要性 データの分類や分析において、偏りのないように複数の切り口を考えることの重要性を感じました。そして、そこから生まれたインサイトが本当に正しいのか、網羅的に考えられているかを見極める必要もあると理解しました。これは実務でも同様で、仮説に基づいて行動する際、その仮説が正しいかどうか、考えに漏れがないかを確認することが非常に大切だと思います。自身の業務に限らず、さまざまな業界の分析を行う際にも、抜け漏れがないように、その都度確認する必要があると感じました。 データ再分類のアプローチは? また、異なるプロジェクトにおいても、共通点やどのように分類できるかを常に言語化するスキルを身につけたいと考えています。過去のアウトプットに関しても、新たな切り口でデータを再分類できないかを模索し、再検討とアップデートを続けていきたいと思っています。

デザイン思考入門

アイデアの種が芽吹く瞬間

ブレインストーミングはどう? ブレインストーミングは、取り組みやすい手法だと感じました。個人でも実践できるとのことで、日々の業務のなかから一つ以上の要素を抽出し、それに対して自分なりの改善点をたくさん考えてみることができそうだと思いました。 SCAMPER法はどう? また、実践演習ではSCAMPER法を用い、普段意識しない視点から物事を考える機会が得られました。十分に洗練された状態のものに対しても、「もっと削れないか」や「代わるアイデアはないか」といった異なる視点から検討することで、さらに良い結果が生まれる可能性を実感しました。 どうやって大量発想する? 単純なアイデア出しであっても、やみくもに考えるのではなく、さまざまな手法があることを学びました。いずれにしても、最初はアイデアの量を重視し、まずはたくさんの考えを出すことに専念しようと思います。

デザイン思考入門

疑問から生まれるデザインの力

多様な視点が見えた? 同じテーマについて多様な視点が存在することを学びました。ユーザー目線で現状の仕組みが本当に適切かどうか検証する過程で、各メンバーが異なる観点から意見を述べるのが非常に印象的でした。また、デザイン思考に関しても、参加者それぞれの想いが交わり、ディスカッションが盛り上がった点がとても興味深かったです。 現状をどう問い直す? 現状に疑問を持つことの重要性を実感しました。従来の方法や制度がただ続いている理由だけで運用されている場合、それをユーザー目線で見直し、より使いやすい形に改善する必要があります。まずは現行制度の確認と再検討を行い、実際に受けた問い合わせや相談内容を反映させながら問題定義を進めることが大切です。さらに、可能な範囲で改善策を検討し、ロジックツリーなどの手法を用いて試行錯誤を重ねるプロセスが印象に残りました。

データ・アナリティクス入門

データ活用で見えた新たな気づき

平均値の選び方は重要? 平均値には様々な種類があり、その選択はデータに大きな影響を与えます。外れ値がある場合、平均値よりも中央値を採用することが重要であり、データのばらつきを数値で示すために標準偏差を使用することが効果的であることを学びました。 輸送会社ごとの加重平均とは? 私たちの事業所で使用する輸送会社の使用率を考慮し、加重平均を採用することで、待機料などの平均額をより正確に把握することができると考えました。 データの明確化を目指して 費用や作業時間を集計するアプリを使い、加重平均と標準偏差を計算することで、数値の差を明確化し、より精度の高い平均値の算出を目指しています。 実績データとの比較はどうする? これらの処理結果として得られた加重平均値を基に、毎月の実績データと比較し、データの妥当性と信頼性を確認する予定です。

クリティカルシンキング入門

対話が拓く新たな視座

無意識の偏りは気づく? 人は無意識のうちに考えに制約や偏りを持ってしまうものですが、そのことに気づき意識的に向き合うことで、偏った思考を防ぐことができると感じました。ライブ授業では他の受講生の意見を直接聞けるため、自分では思いつかなかったアイデアを知ることができました。他者に意見を伝え、フィードバックを受けることで、視点や視座、視野の広がりを実感し、より良い意思決定につながると感じています。 仕事の視座は変わる? 仕事では、従来は優先度やリスク・ベネフィットといった観点で物事を考えていましたが、今後は視点・視座・視野を取り入れて、関係する人々がどう考えるか、異なる立場からはどう見えるか、また他への影響をどう予測するかといった面も重視していきたいと思います。自分の考えを伝えて様々な意見を受けることにより、思考の幅が広がると確信しています。

クリティカルシンキング入門

実務で活きる!効果的な問いの立て方

初動で何を押さえる? 取り組むべき問いについて、最初の一歩からずれてしまうと、異なる論点へ進んでしまう可能性があります。したがって、組織やチーム全体で方向性を共有することが非常に重要だと感じました。イシューを特定するためには、問いを明確にし、具体的に考え、一貫して押さえ続けることが大切です。 採用手法の見直しは? 実務においては、新卒採用や中途採用の手法について検討する際、キャリアフェアの動員数を増やすことだけに固執せず、イシューがどこにあるのか、そして他に利用できるチャネルを探求していく視点が重要だと学びました。 採用効率向上の方法は? はじめに、どのような手法が考えられるのかリサーチし、それを書き出してみます。そして、ターゲット層を分析し、具体的にどのような行動が採用効率を向上させるのかを検討していきたいと思います。

アカウンティング入門

流動 vs 固定、財務分析の奥深さ

資産と負債はどう関係? 流動資産が流動負債を上回る状態が良いことを理解しました。しかし、固定資産と純資産の関係についてはまだ十分に理解できていません。新しい業界と伝統的な業界では、貸借対照表における固定資産の比重が異なることが分かりました。 返済能力はどう評価? 流動資産と流動負債のバランスを見る際に、短期返済が必要なものを即座に返済できるかを確認したいと思っています。業界特有の特徴を理解し、共通点と相違点を把握した上で、定量的および定性的に分析を進めていきたいです。 支援前に何を確認? 業務での使用イメージはまだあまり湧きませんが、損益計算書と同様に貸借対照表も詳細に確認し、顧客企業への支援を始める前に定量分析や定性分析をしっかりと行うことが重要です。また、数年分の貸借対照表を見て、その推移を確認することも必要です。

クリティカルシンキング入門

新しいデータ分析手法で業務効率化に成功!

データ加工の基本技術とは? データの加工の仕方、分け方の工夫、分解の注意点の3つを学びました。特に注意が必要だと感じたのは、分け方の工夫と分解の注意点です。手を動かしてそれらしいデータが見えた際にすぐに結論を出してしまうと、誤った判断に繋がる可能性があると感じました。 商談データ分析の新アプローチ? 私の業務では、特に商談や受注に関するデータの分析を担当しています。これまでとは異なる切り口でデータを集計し、同時に新しい仮説をもとにデータを分解してみることは、すぐに実践できそうです。 仮説を活用したデータの再確認 商談や受注データの吸い出しを行う際には、常に新しい仮説を持って取り組むことが重要です。そして、一見それらしいデータが見えても、一段階深く集計の漏れや新しい切り口、データの正確性を再確認することが必要です。

データ・アナリティクス入門

標準偏差で見えるデータの魔法

標準偏差ってどう理解? バラツキを示す標準偏差について、普段利用する機会が少ないためか、初めて触れる際にはとっつきにくい印象を持ちました。学校での成績に用いられる偏差値とは異なるものなので、具体的な事例に基づいて何度も実際に使ってみることが重要だと感じます。 代表値とバラツキの違いは? 一方、単純平均、加重平均、中央値といった代表値は、日常的に利用しているため理解に苦労することはありません。しかし、バラツキに関してはこれまであまり注目してこなかったため、データの特徴把握のためにも積極的にビジュアル化し、標準偏差を意識して利用したいと思います。 どう実践に活かす? 今回学んだ内容を実践に取り入れる際、代表値だけでなく、標準偏差がどのような場面で効果的に使えるのかを具体的に考えながら業務に活かしていきたいです。

「異なる」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right