データ・アナリティクス入門

仮説×データで未来が変わる

仮説とフレームワークは? 本講座では、問題解決のプロセスにおいて、スピードと精度を向上させるために、仮説を立てながら分析を試みる重要性を学びました。また、3Cや4Pといったフレームワークを効果的に活用する方法も理解できました。 必要データはどうする? 仮説に基づいて必要なデータを抽出し、場合によっては新たにデータを取得する必要があることも実感しました。既存のデータ分析にとどまらず、サーベイの実施などによって分析に不可欠な情報収集にも役立てることができると感じました。 多角的観点は何故? さらに、分析の視点は単に数値やデータを検討するだけでなく、データ整備や企画立案の段階でも重要であるという気づきを得ました。今後、業務のあらゆる場面でこれらの視点を取り入れながら取り組んでいきたいと思います。

データ・アナリティクス入門

平均だけじゃ見えないデータの真実

平均以外の指標は? 単純平均は外れ値の影響を受けやすいため、中央値やデータのばらつきを確認する重要性を理解しました。また、ヒストグラムや標準偏差についてはこれまで十分に活用できず苦手意識があったものの、演習を通じて具体的な活用イメージを持つことができました。加えて、加重平均や幾何平均が、データの重要度や変化率、成長率の評価に有効である点も理解できました。 分析方法はどう変わる? 課題分析においては、単に平均値から仮説を立てるだけでなく、データのばらつきも併せて確認するプロセスを取り入れるようにしています。さらに、セミナーの集客状況や参加者の満足度を評価する際、平均値に加えて中央値をしっかりとチェックするよう努めています。今後は、加重平均や幾何平均が活用できるシーンについても積極的に検討していく予定です。

クリティカルシンキング入門

伝わる資料作成で魅せる情報力

グラフ活用の効果は? 視覚的にわかりやすい資料作成の重要性を実感しました。特性にあったグラフを活用し、色の意味合いを正しく理解した上で強調表現を行うことで、伝えたい内容をより効果的に表現できることがよくわかりました。 適切な表現で伝える? また、資料を閲覧する相手の特性に合わせた言葉選びは、内容の理解度に大きな影響を与えると感じました。相手に合わせた表現方法を工夫することで、情報がより明確に伝わる点は学びの大きな一つです。 資料改善の見直しは? 普段、顧客とのコミュニケーションで資料を用いて説明する機会が多いことから、今一度自分が過去に作成した資料を見直し、改善点がないか復習しようと思います。また、部下が作成した資料に対しても適切な改善点を指摘できるよう、今後の資料作成に意識して取り組んでいきます。

戦略思考入門

顧客を魅了する差別化の秘訣

どうして差別化が必要? 差別化とは、単に他社と違うだけでなく、顧客に選ばれるために、顧客、競合、自社を徹底的に理解することだと感じました。特に、ターゲットとなる顧客が誰であるか、またその顧客にどのような価値を提供できるかを正確に捉えることが重要です。加えて、実現可能性、持続可能性、模倣困難性なども念頭に置いた施策を検討する必要があると理解しました。 顧客視点はどう活かす? また、昨年度末に自社の事業方向性を検討する機会がありましたが、その際には自社自身に焦点を当てすぎた結果、顧客視点が希薄になっていたと反省しています。今後はまず「顧客にとっての価値は何か」を追求し、その上で、自社の強みや弱み、保有する経営資源を整理し、課題を明確にすることで、実現可能かつ持続可能な差別化を実現していきたいと考えています。

クリティカルシンキング入門

全体把握でMECEを極める

どのように分解する? 分解作業において、要素を漏れなく洗い出すのが自分には苦手であると気付きました。ダブりなく整理する点は、既に出した切り口を見直すことで対処できるものの、漏れを防ぐには全体を捉え、どのように分解すればMECEになるのかを常に意識する必要があると感じました。また、分解の結果、明確な傾向が見えなくても、それ自体が一つのデータであり、次の考察に役立つという考え方にも納得しました。 労務データの新視点は? 労務問題を考える際、組織ごとの残業時間やエンゲージメントサーベイといった複数のデータは活用してきましたが、データの加工や組み合わせによる新たな切り口で分析する経験は少なかったです。今後は、サーベイの種類を分類し、データを整理・集計することで、より新鮮な視点から組織を見据えていきたいと思います。

マーケティング入門

ユーザーの声から学ぶ現場の知恵

なぜユーザー目線に注目? 改めて、ユーザー目線が単なる机上理論ではなく、実際のペインや潜在需要、さらにはカスタマージャーニーの重要性が非常に刺激的であると感じました。自社製品が短期的な成果を追求するあまり、ユーザーの声を見逃してしまうことが組織全体にとって大きなリスクになると考えています。 なぜカスタマー言葉が難しい? また、これまで先輩方からはカスタマー目線での要望に耳を傾け、徹底して聞き役に徹すべきだと指導を受けた記憶があります。しかし、私自身、カスタマー言語を理解するために事前情報を収集し、実際のコミュニケーションに臨むと、非常に高いハードルが存在する要望が提示されることに気付かされました。この経験は、ある種の仲間意識を感じさせるものであり、今後のコミュニケーションの発展に大いに期待しています。

クリティカルシンキング入門

伝わる!ピラミッドの極意

伝え方はどう変わる? ピラミッドストラクチャーの考え方を学び、何をどう伝えるべきか、メインメッセージとその理由、根拠を明確にする重要性を実感しました。自分の伝えたいことを一方的に表現するのではなく、相手にきちんと伝わる方法を心掛けることが大切だと感じています。 業務効率は向上? この考え方は、上司への提案や相談、部下への指示出しなど、日々の業務において活用できると思います。相手に求めることやその背景、理由を論理的に伝えることで、業務の効率化にもつながると考えています。 スキルは伸びる? 今後は、提案や指示を行う前にピラミッドストラクチャーの手法を活用し、伝えたい内容が明確かつ論理的に整理されているかどうかを意識していきたいです。そうすることで、伝え方と考え方のスキルの向上を目指していきます。

アカウンティング入門

PL分析で見えた!未来の利益拡大戦略

PLの理解を深める意義とは? PL(損益計算書)の仕組みを理解する学習を通じて、企業がどのように利益を生み出すかだけでなく、将来的にどのようにして利益を拡大していくべきかを、その企業のコンセプトを考慮しながら想定することが重要であると学びました。 月次分析での知識活用法は? まずは自社の状態を把握するために、毎月の月次分析でこの知識を活用したいと思っています。利益の有無だけでなく、今後どのような対策を取ることでさらなる改善が期待できるのかという観点からも分析を進めていきたいです。 競合と取引先のPL比較はなぜ重要? さらに、競合他社や取引先に関する分析も行い、さまざまな業界のPLとの比較も試みていく予定です。なお、グループワークで紹介された動画も参考にしながら、学びを深めていきたいと考えています。

データ・アナリティクス入門

データ分析で仮説と検証を学ぶ

仮説の立て方を見直すには? 今まで、データ分析において仮説から検証のプロセスをなんとなくで行っていたが、複数の仮説を立てることや、網羅性を持たせることはあまり意識していなかった。また、立てた仮説の検証だけでなく、反対の事象を裏付けるデータも収集することで、より説得力のある仮説検証ができる点も意識すべきだと感じた。 データ分析を業務にどう活かす? 今後、業務でデータ分析を行う際には、仮説立てから検証までのプロセスを意識的に組み込むようにしたい。現在取り組んでいる運転資本の改善についても、問題がどこにあるのか(Where)を仮説立てし、既存のデータから分析を行うようにする。そして、Whereが特定できた後には、なぜその問題が生じたのか(Why)の仮説を立て、その仮説を立証するための分析方法を検討するつもりだ。

クリティカルシンキング入門

複数視点で見つける意外性

複数視点で何を学んだ? 博物館の来場者数の分析では、単一の切り口だけでなく複数の視点から見ることで、これまで気づかなかった情報が浮かび上がる様子に強く印象づけられました。ひとつの分析に頼ると誤った結論に導かれる恐れがあるため、複数の視点からの仮説を立て、しっかりと検証する重要性を改めて実感しました。 アンケートはどう分析する? また、アンケート結果をまとめる際にも、今回学んだ複数の切り口での分析方法が生かせると感じました。従来は年代、性別、部署、役職など、一つのカテゴリーに絞って分析しがちでしたが、複数の視点から見ることで今まで気づかなかった傾向を見出せる可能性があります。今後は、仮説を立てながらどのような角度で分析を進めるのが最適かを考えつつ、アンケート結果のまとめに取り組んでいきたいと思います。

マーケティング入門

現場で磨く!顧客視点の極意

体験で何が学べた? 自らが同じ環境に身を置くことで、真のニーズを引き出すという学びがありました。その経験から、自分が自然に心掛けていた考え方が正しいと再確認できた一方、ペインをゲインに変える視点が欠けていたことに気づかされました。 何に注力すべき? 顧客のニーズを把握するため、カスタマージャーニーを丁寧に実施し、これまで見落としていたペインポイントを洗い出すことの重要性を感じています。その上で、見つけたゲインポイントに基づいて、今後どの方向に力を注ぐべきかを提言していきたいと思います。 どのデータが鍵? また、マーケティングでは裏付けとなる指標やデータを収集し、分析を行うことが不可欠です。これらの情報をどのように効果的に収集しているのか、その方法と手法についてさらに学んでいきたいと考えています。

データ・アナリティクス入門

仮説実践!即断で未来を掴む

効果測定は本当に? A/Bテストの実施により、短期間で効果測定が可能であることを実感しました。一方、単にデータ収集に時間をかけるだけでは、必ずしも問題解決には結びつかないということが分かりました。 分析時間は適切? 業務を進める際、初めはデータ分析から始めることが多い中、分析に時間をかけすぎる傾向があると感じています。一定量のデータが得られた段階で、迅速に仮説を設定し、追加の分析が必要かどうかを判断するか、実行フェーズに移行するかを見極めることが重要だと学びました。 行動開始のタイミングは? このコースを通じて、仮説に基づき行動に移すタイミングの大切さを再認識しました。今後は、データ分析に没頭しすぎず、適宜ストップしながら、仮説思考を軸にした実践的なアプローチを心がけたいと思います。

「今後」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right