データ・アナリティクス入門

目標設定で描く成功の道

目標設定の極意は? まず、結論のイメージを明確に持ちながら取り組むことの大切さを実感しました。一度目標を定めることで、問題がどこにあるのかを細分化し、解決に向けた要素を順序立てて洗い出すことができると感じています。また、単に分析するだけでなく、考え得る原因を幅広く仮説として立て、実際に検証するプロセスが非常に有効だと考えています。 データ収集の工夫は? 次に、データ収集の段階ではアウトプットとなる最終形を念頭に置き、必要なデータが不足している場合は柔軟に追加を行うことが重要だと思いました。集めたデータに対しては、有用な情報を引き出せるようどのように加工するかを常に考える姿勢が、最終的な成果に大きく寄与すると実感しています。 進捗管理の秘訣は? また、プロジェクトの進捗管理においては、月次レポートの形式や要素を特定する際に、学んだ知識を活用しながら、問題点の洗い出しや原因分析を進めたいと考えています。プロジェクトごとに必要な情報を細分化し、検証することで、より的確な進捗管理が実現できると思います。さらに、可能性のある原因については一つに絞らず、複数の仮説を立てながら網羅的に検討することが効果的だと感じています。 加工方法はどう? 最後に、データ加工に際しては、どのような方法が最適であるかを検討しながら進める必要があると学びました。これまでの学びを今後の実践に活かし、より実践的で効果的なプロジェクト管理に取り組んでいきたいと思います。

データ・アナリティクス入門

実験と観察で見つける自分の一歩

検証方法の違いは? 過去の学習では、「データをつくって検証するアプローチ」(実験科学的)と「データを取得して検証するアプローチ」(社会科学的)の二種類に整理していました。しかし、デジタル領域の発展により、社会科学的なアプローチにも実験科学的手法が導入可能となり、ABテストが実施できるようになりました。いずれの方法も最終的な目的は「最善の行動をとること」であり、状況に応じて観測による検証と実験による検証の有効なステージを意識することが重要です。 現場での検証は? 現状の業務では、実験による仮説検証が難しいケースが多いですが、人事分野ではトライアルとして人事制度の導入が行われることがあります。また、業務改善ツールの試験導入時に導入群と非導入群に分けることで、ABテストのような検証手法が活用される可能性もあります。一方、ある情報発信においては、2通りの作成が現実的な工数を超えることから、デジタル技術を活用する方法が望ましいと考えられます。 原因検証はどう? 原因探索において重要なのは、単にABテストを行うことではなく、原因仮説を体系的に(MECE)導出し、それぞれを迅速に検証するプロセスです。たとえば、特性要因図や5 Why分析を用いて複数の原因仮説を立て、適切な方法でスピーディーに検証していくことが求められます。特に人事分野では、複数の要因が絡むため、一つの真因に固執せず、各要因の寄与を考慮しながら柔軟に仮説検証を進めることが大切です。

データ・アナリティクス入門

まずは基本!仮説で切り拓く学び

仮説はどのように考える? 仮説を考える際には、複数の仮説を立てることと、それぞれの仮説に網羅性を持たせることが重要です。また、反論を排除するためにも必要なデータを集め、仮説同士を比較検証できるようにすることを忘れてはいけません。 仮説定義はどうなってる? ビジネスの現場における仮説とは、ある論点に対する仮の答えを示すものです。仮説は、目的に応じて「結論の仮説」と「問題解決の仮説」に大別され、時間軸によって仮説の内容が変化します。 戦略はどう変化してる? マーケティングにおいては、プロモーションの戦略がIT関連の技術発展によって大きく変動する現状を踏まえ、トレンドを正確に抑えることが重要です。同時に、顧客満足度を非常に高いレベルに引き上げることでブランド価値を高めることが求められます。 実施前に何を検証すべき? 実際、分析の段階で仮説を立てずに作業してしまうことが多いと感じました。そのため、より網羅的に情報を確認するためにも、クリティカルシンキングを意識することが有効だと実感しています。これまでフレームワークの活用に対して懐疑的な面もありましたが、まずは基本に立ち返ることが大切だと感じました。 新施策の仮説検証は? 新しい施策を進める際には、4Cの視点を取り入れて仮説を立て、その仮説に基づいて必要なデータを収集することが有効です。データ収集の際は、自己のバイアスに捉われることなく、網羅的な情報収集を心がけるよう努めています。

マーケティング入門

対話で創る本物の体験

体験の差別化は? 「体験を考える」というテーマを通じ、ただ優れた商品を提供するだけでなく、その商品を通して得られる独自の体験が差別化につながるということを再認識しました。具体的には、個々の商品に飛び抜けたものがなくても、全体で見ると顧客が大満足しているという事例から、唯一無二の体験を提供できることの重要性を感じました。 一人だけでは? また、総合演習では、顧客視点で考える難しさを痛感しました。一人で考えを広げるには限界があるため、チームでの意見交換やヒアリング、アンケート、さらに顧客の行動観察など、さまざまな情報収集が必要だと実感しました。 顧客の本音は? 今後は、クライアントの心理を的確に捉え、常に顧客の立場に立って何が求められているのかを考えながら、対話や観察を行っていきたいと思います。私たちの商品を単に売るのではなく、顧客にとって「必要なもの」と感じてもらえるよう、デザインやネーミングにもこだわっていく所存です。 価格競争を避ける? さらに、無駄な価格競争を回避するため、市場分析のフレームワークを活用し、ターゲットを明確に絞り込んで自社の強みを存分に発揮できる商品作りに取り組みたいと感じました。 顧客体験の検証は? 訓練項目としては、まず顧客がどんな体験を望んでいるのかを考えること、次に売れない商品がどのような体験につながるのかを検証すること、そして、全体を俯瞰して良い体験を生み出す方法を模索することが挙げられます。

戦略思考入門

3CとSWOTで見つけるビジネス強み

フレームワークの活用法を学ぶ 3C分析とPEST分析は事業の成功を導くための有力なフレームワークです。3C分析では競合、市場、自社の顧客ニーズを整理し、自社の強みを明確にします。さらにSWOT分析を組み合わせることで、弱みや脅威を発見し、それを強みや機会に転換する方法を学びました。これにより、どの場面でどのフレームワークを活用するべきかを理解でき、特にビジネスの比較が具体的にイメージできるようになりました。特徴の理解は強みの発見につながります。 事例を通じた深い理解とは? 特に、実際の事例を通じてフレームワークがどのように適用されるのかを考えることで、理解がより一層深まりました。具体的には、3C分析によって市場や顧客のニーズを把握し、自社の独自性を明確にした後、SWOT分析でその独自性が真の強みであるかを検証することができます。また、バリューチェーン分析を通じて店舗の業務フローを整理し、貢献度の高い部分を特定することの重要性を学びました。 効果的な人材教育を怎麼考える? 業務の効率化に向けて、長期的には設備の導入といった機械化を検討し、短期的には貢献度が高い業務を担う人材の育成に注力します。これには、他部署との連携や市場調査による情報収集が不可欠です。また、人材教育では、資格や等級に応じた研修を実施し、効果的な教育スケジュールを組むことが求められます。こういった要素をフレームワークを駆使して分析し、具体的な戦略を立案することが肝要です。

データ・アナリティクス入門

数字が紡ぐリアル戦略ストーリー

数字の意味は何だろう? 分析のアプローチについては、ただ単に分析を進めるのではなく、数字に基づくストーリーを意識することの重要性を実感しました。統計データを見る際にも、平均値だけでなくばらつきを把握することで、より正確な判断ができると感じています。データ全体の傾向を理解した上で、平均、中央値、最頻値といった代表値から最も適切なものを選ぶことが大切です。 課題解決の鍵は? また、顧客の課題に対して解決策を提案する場合、やみくもな分析ではなく、具体的な数字に裏打ちされたストーリーによって、提案の確度を高め、顧客の納得感につなげることが求められると考えています。顧客自身が「これなら解決できる」と信じ、実行に移していただくためには、具体的で説得力のある根拠が不可欠です。 戦略の軸は何か? さらに、これからある不動産ブランドの戦略を分析する際には、まず「何を知りたいのか」という問題意識をはっきりさせ、最終的にどのような結論に導きたいのかを明確にすることから始めます。その上で、価格帯やエリア、スペックなど細かい情報に分解し、必要なデータが取得可能かどうか確認することが大切です。 仮説はどう練られる? 次に、取得したデータをもとに、なぜその戦略が採用されているのかという仮説を立て、検証の優先順位をつけながら実態を深く理解していく流れが有効だと感じました。こうした手法を通して、現実に即した分析が行え、説得力のある結論に結びつくと確信しています。

データ・アナリティクス入門

大学生活のデータ分析で見えた成長のカタチ

仮説立てに必要な視点とは? 仮説を立てる際には、先入観に囚われず、考えられるあらゆる要素を踏まえることが重要だと感じました。これまでの経験も無論大事ですが、現状のデータを新鮮な目で眺めることが重要だと思います。 仮説が抱える落とし穴は? また、仮説とは自分で仮の答えを設定すること、という点についても非常に腑に落ちました。それというのも、仮説を立てたとしても、それが必ずしも現状の問題解決になっていないことがあるからです。 大学で得る成長とは? 大学での学びについては、一般的には学生の成長にさほど寄与しないと指摘されることがあります。しかし、それが本当なのか、またそうだとしたら何が原因なのかを検証したいと考えています。 データ分析で何を探る? 最初の仮説として、「大学での4年間は、何らかの形で学生の成長に貢献しているはず」という仮説を立て、大学内のあらゆるデータを分析していきます。 学生の成績変化をどう評価する? 具体的には、入試の時の成績とGPAを比較し、著しく成績が伸びた学生をピックアップします。彼らにアンケートを実施し、4年間のパフォーマンスを学業、学業外活動、就職結果などの要素に分けて点数を付けてもらいます。 インタビューで何を聞く? 最後に、各数値の典型的な学生をピックアップし、個別インタビューを行う予定です。

アカウンティング入門

経営指標を使いこなす力を磨く

ケーススタディで何を学んだか? 実際のケーススタディを通じて、P/Lの各項目である営業利益、経常利益、そして当期純利益の増減を比較し、「仮説を立てて検証する」方法を学びました。例えば、「売上高が増えているが売上総利益が減っている理由」として、売上原価の増加という事実を確認し、その原因を推測するプロセスがとても理解しやすかったです。 P/Lを読む際の重要ポイントは? また、P/Lを読む際に重要なポイントも学びました。まず、大きな数字である売上高、営業利益、経常利益、当期純利益を押さえることです。次に、分析においては、比較・対比を通じて傾向の変化や大きな相違点を見つけることが大切です。 どのように過去のP/Lを活用する? 具体的には、自社の過去のP/Lの推移を分析して結果を確認し、今後の予測を立ててみることが重要です。中長期計画を考える際に、これらの分析結果や予測を参考にすることができます。また、同業他社や興味のある会社、業界のP/Lを確認し、好調・不調の推移やその原因を予測することも有益です。 具体的なアクションは何か? 私が取り組むべき具体的アクションとしては、自社のここ数年のP/Lの推移を確認し、今期の予測値について増減の理由を仮説することが挙げられます。同業他社の公開されているP/Lと自社を比較することも重要です。さらに、関連する書籍に掲載されている数社のP/Lを確認し、読み取れることをまとめていきたいと考えています。

データ・アナリティクス入門

仮説で見つける新たな視界

どうして複数仮説が必要? 結論を先に決めてしまわず、はじめから複数の仮説を立てることが大切です。それぞれの仮説に網羅性を持たせ、偏りのない検証を心がける必要があります。 どのフレームが使える? 仮説を立てる際には、3Cや4Pなどのマーケティングフレームワークを活用することが有効です。他のビジネスフレームワークも使いやすさを考慮して試すと良いでしょう。さらに、仮説を検証するためのデータが恣意的になっていないか注意することが重要です。 実績の要因は何? 実績に対して要因を探る際、ベテランの経験則に基づく仮説が採用されやすい傾向があります。しかし、対案を立案しデータによる検証を実施することで、本当にその仮説が正しいのか確認する必要があります。また、仮説を証明するためだけのデータに依拠しすぎないよう注意してください。 急な依頼はどう考える? たとえば、上司から急遽、ある実績に対して1つの仮説だけを検証するよう依頼されたケースがありました。その際、他の分析結果ではその仮説の寄与度が低いことが示されており、また分析結果が活かせるのは1年後という説明から、急いで1つの仮説だけを検証する必要はないと理解してもらいました。 理想と現実は? このように、上司がある実績について理想的な状況を望んでいる場合でも、実際には複数の説明変数が影響していると考えられます。したがって、必要なデータを揃えて十分な分析・検証を行うことが求められます。

データ・アナリティクス入門

仮説が拓く自分発見の旅

仮説はなぜ重要なの? 仮説を持つことは非常に重要です。物事を早急に結論づけるのではなく、複数の視点から検証し、多角的に物事を捉えることが大切です。 結論への仮説は? 具体的には、結論に向けた仮説と問題解決のための仮説の二種類を考えます。前者は提示された論点に対する仮の答えとして、後者は実際に問題を解決するための道筋として役立ちます。 仮説の意義とは? 仮説を考える意義は大きく三点あります。まず、仮説を立てることにより検証マインドが向上し、説得力のある議論が展開できるようになること。次に、問題に対する関心や意識が高まる点。そして、仮説をもとにした検証プロセスが、最終的な結論に至るスピードアップに寄与することです。こうした仮説検証のプロセスには、アンケートやテストなどの具体的な手順を踏むことが有効です。 なぜ多角的に検証する? また、クライアントのブランドリフトの結果や売上の変動を見た際に、すぐに結論を出さず、なぜその結果が生じたのかを複数の切り口で検証していく必要があります。検証の際は、過去、現在、未来という時間軸に沿って仮説の内容が変化する可能性も考慮することが重要です。 検証の手順はどうなる? まずは情報やデータを収集し、各因子が売上や認知にどのように影響したのかを多角的に検証してください。その手段として、相関分析やヒストグラム、グラフなどによるデータの可視化、さらにはインタビューや簡易調査の実施が効果的です。

アカウンティング入門

数字で読み解く成長の軌跡

提供価値は何? Week2に引き続き、提供価値とコンセプトに基づいて考える重要性を改めて実感しました。PLを確認する際は、売上高、営業利益、経常利益、当期純利益といった大きな数字で全体像を把握し、比較や対比を通じて傾向の変化や違いを見極めることが大切だと学びました。 経常利益の意味は? また、これまでは当期純利益に注目していましたが、投資家の視点では毎年の稼ぐ力を示す経常利益に注目するケースが多いと知り、新しい視点を得ることができました。さらに、BSで企業の体力を見るだけでなく、通常の収益と費用が分かる経常利益を通じて、継続して稼ぐ力があるかどうかを判断することの意義を感じました。 企画収益はどうなる? 新規事業や企画の立案時には、まずその企画の提供価値を明確にし、コンセプトに基づいてどのように収益を上げるか、売上高や営業利益、経常利益がどのように変動するかを論理的に考える習慣を身につけたいと思います。当期純利益に固執せず、売上高、営業利益、経常利益のバランスが競合他社と大きく乖離していないかどうかも、検証の観点に加えていきます。 異業種のPLは何を示す? そのため、提供価値とコンセプトに立ち返る思考法を定着させるために、同業種だけでなく異業種のPLを定期的にチェックする習慣をつけたいと考えています。今回のカフェ事例のように、身近でイメージしやすい業界のPLから分析を始めることで、理解を深めていこうと思います。

アカウンティング入門

バランスシートで未来を読む

資金活用の意味は? 今週は、資金の使い道や事業への投資の適切さについて学びました。特に、ある視点から企業のバランスシート(B/S)を通して経営者の意図を読み解き、資産の有効活用や安全性に関する考察を深めることができました。固定資産と純資産のバランスが企業の安全性にどのように影響するかを理解し、B/Sに経営者の将来ビジョンが反映されている点を学ぶことで、投資判断の基礎知識を一層強固なものにできたと感じています。 比較検討の要点は? また、業務においては、投資先企業と自社のバランスシートを比較検討する中で、良い点と改善点を洗い出すことの重要性を実感しました。これにより、投資先企業の財務状況を総合的に把握し、投資判断の精度を高めることが可能になると考えています。 成長戦略はどう? さらに、投資先企業の成長を支援するための具体的な戦略の立案や、自社の投資戦略改善へのフィードバックの獲得にも取り組むことができそうです。最終的には、投資先企業の成長が自社の利益にもつながる相乗効果を目指していくというビジョンが明確になりました。 継続的な検証は? 決算書やファイナンス資料を活用し、投資先企業と自社のバランスシートを継続的に分析する中で、良い点や改善点を具体的に把握することができました。これらの情報を基に、定期的なモニタリングと必要に応じた戦略の修正を行うことで、投資判断の質をさらに向上させ、企業全体の成長に寄与できると感じました。

「分析 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right