データ・アナリティクス入門

小さな仮説、大きな成長

なぜ仮説が必要? 仮説は非常に重要です。急いだり怠ったりして、仮説を立てずにいきなり方法論に入ると、結果として時間が余計にかかるか、誤った方向へ進んでしまう可能性があります。 どう検証すべき? また、仮説はあくまで仮の答えであり、その検証が必要です。検証のためには目的意識を持ったデータ分析が不可欠です。そのため、たとえ「答え」となりうるものであっても、複数の仮説を立てることが求められます。さらに、3Cや4Pなど異なる切り口を用いることで、問題全体を網羅的に捉えることが可能となります。 疑いは成長の鍵? 加えて、仮説の立証を目的としたデータ収集や分析においては、自身の仮説が誤っているのではないかという視点を忘れずに実践することが重要です。こうすることで、自分に都合の良いデータだけを集めてしまうことを避けられます。 原因はどう見極め? 実店舗の売上やPLに関する業務では、好調な店舗と不調な店舗が存在します。いずれの場合も、その原因を正確に特定し、好調なら通例に従い、不調なら改善策を講じることが必要です。これまで、まず膨大な時間をかけてデータを収集していたところを、仮説思考を取り入れることで、何が問題なのかを先に明確にし、仮説を立てることから対応するようになりました。 何を意識すべき? また、目につきやすい場所に仮説思考に関するポイントやステップを掲示し、常に意識できる環境を整えることも有効です。正解や不正解を問わず、失敗を恐れずに実践していくこと、日常的に課題意識や疑問を持つこと、そして先輩たちの実践事例や経験から学ぶことが、さらなる成長につながります。

データ・アナリティクス入門

仮説と比較で未来を拓く

仮説の組み立て方は? 仮説を立てるための考え方について、業務に取り入れていきたい点をまとめました。まず、「分析とは比較」であるという点を意識し、比較対象を設けることで、他者にも分かりやすい分析を目指します。また、問題解決の仮説を立てる際には、What(問題は何か)、Where(どこに問題があるか)、Why(なぜ問題が発生するか)、How(どのように対処すべきか)の4つのプロセスを順に追うことで、解決策を推進していきたいと考えています。さらに、常識を疑い、新たな情報と組み合わせながら発想を止めず、創造的な仮説に肉付けを加える方法も取り入れていく予定です。 フレームワークの活用は? また、動画学習で触れたフレームワークも業務に積極的に取り入れることで、より実践的なアプローチが可能になると考えています。 毎月の数値分析法は? 具体的な取り組みとして、まずは毎月の数値分析に注力します。解約数やサービスの利用状況に下落傾向が見られた場合、商品やサービス自体に問題があるのか、利用顧客の属性に原因があるのかを、対前年比に加えて他年度や学年、属性別といった複数の比較軸で検証し、どこにギャップが生じているのかを明確にしていきます。 WEB数値の変化は? 次にWEB数値の分析にも力を入れます。今後のWEBサービスの定期的なリリースに合わせて現在の数値を把握し、増加する数値が示す傾向を基に、即時に対策を検討できる体制を整えたいと思います。 資格取得で成長は? 数値に対する意識を継続して高めるため、分析関連の資格取得も視野に入れ、さらなるスキルアップを図っていくつもりです。

データ・アナリティクス入門

データの先にある学びの秘密

講義内容はどう感じた? ライブ講義を拝聴しながら、ポイントを迅速に判断し整理する力がまだ十分でないと感じました。どのデータセットを扱う際にも、何を明らかにしたいのかという目的意識をしっかり持ち、ロジカルシンキングや仮説立案のスピードを高める必要があると痛感しました。大量のデータを扱う中で、解決策の発見に注力するあまり、次第に目的から逸れてしまうことが実務上でも生じるため、その兆候を早期に掴むことが重要であると改めて認識しました。 営業戦略はどんな課題? 営業データを活用した営業戦略の立案においては、成約率向上という課題に対して、これまでの商談データを基に再検証を行う必要があります。過去にはあまり意識されなかったデータの粒度の粗さや、文章化およびビジュアル化の不足が、組織全体の納得感に影響していたと感じます。具体的には、なぜ成約率が低いのか、セグメントごとや担当者ごと、そして営業ステップごとの課題を明確にし、それぞれの原因を検証した上で、効果的な解決策を導き出したいと考えています。 UX改善は何が必要? サービス利用データを活用したUX向上施策の立案では、SaaSサービスのアクセスログをもとに、どの機能が利用され、どの機能が利用されていないかを明確に分類することが求められます。使われていない機能については、導入時からの利用状況や徐々に利用が減少しているのかなど、その背景を整理しながら原因分析を行います。さらに、仮説を立てた上で改善策を検討し、場合によっては機能の廃止も含めた対応を実施するために、顧客へのインタビューなども通じて検証を進めていきたいと考えています。

クリティカルシンキング入門

切り口が変える数字の物語

数字の意味は何か? 数字が持つ意味をより深く理解するためには、まず情報を分解して、その解像度を上げることが重要です。一つの視点だけでなく、複数の切り口から現象を分析することで、より正確な現状把握に繋がります。 結論前の検証は? 具体的には、一つの傾向に満足するのではなく、さらに他の可能性を探る意識を持つことや、得られた分析結果からすぐに結論を出すのではなく「本当にそうなのか」を丁寧に検証する姿勢が求められます。また、頭で考えるだけでなく実際に手を動かし、様々な視点からデータを見直すプロセスも大切です。 MECE活用で分析は? さらに、分析を行う際にはMECEの考え方を取り入れることが有効です。具体的には、階層、変数、プロセスという視点から、物事を漏れなく、重複なく整理していく手法が挙げられます。たとえば、プログラムの参加者数の伸びを検討する場合、年齢だけでなく居住エリアや参加プログラムの種別といった観点から属性を分析することで、より多角的な理解が可能になります。 課題整理はどう進む? また、自身の業務上の課題を明確化するためにも、評価の視点が抜けや重複なく組み込まれるよう、MECEを活用して細分化し、その対応力を数値化する手法は効果的です。担当している事業プログラムの認知度についても、過去数年間のデータを大学別、学部別、学年別、応募種別などの切り口で集計し、グラフ化することで、現状と改善点を明確にできます。もし、最初の分析で十分な結論が得られなかった場合には、別の切り口から再度分析を行い、想定される課題について漏れや重複がないよう整理することが大切です。

データ・アナリティクス入門

仮説で拓く問題解決の未来

仮説の重要性は? 今回の学習で最も印象に残ったのは、「問題解決は仮説の立て方で8割が決まる」という考え方です。What〜Howの4ステップを通じて、まず問題を正しく定義することの重要性を実感しました。また、仮説は一つに固定せず、複数の切り口から検討することで思い込みを防げる点も大変参考になりました。データ収集においては、誰にどのように聞くかが分析の質を左右するため、都合の良いデータだけでなく反証のための情報も意識的に集める姿勢が必要だと学びました。今後は、3Cや4Pといったフレームワークを活用しながら、仮説思考をもとに論理的な問題解決に取り組んでいきたいと考えています。 業務での応用は? また、SIerの業務においては、今回学んだ考え方が「障害対応」、「業務改善提案」、「要件定義」の各場面で役立つと感じました。例えば障害対応では、現象に対する即時対応に加え、Whatで問題を整理し、Whereで影響範囲や発生箇所を特定、Whyで複数の原因仮説を立て、ログや関係者へのヒアリングを通じて検証を進めるやり方に変えることが求められます。業務改善においては、3Cや4Pを活用して顧客課題を構造的に捉え、直感ではなく仮説とデータに基づいた提案を行いたいと考えています。今後は、会議前に最低3つの仮説を用意し、データ収集の際にも反対意見の情報を集めるなど、具体的な行動レベルで実践していく予定です。 今後の展望は? 今後は、仮説をいつ確定させるかの判断基準や、少ないデータでの分析における工夫、さらにはフレームワークの使い分け方のコツについても、さらに深く検討していきたいと思います。

クリティカルシンキング入門

問いに挑む毎日の成長

今の問いは何だろう? イシューとは、今ここで答えを出すべき問いのことです。イシュー設定の際には、「問いの形にする」「具体的に考える」「一貫して抑え続ける」という3つのポイントを意識する必要があります。まずは、問いが何であるかをはっきりさせることが大切です。 全体で課題を共有する? 次に、その問いを常に意識し続けることで、解決すべき課題が見失われないようにします。そして、組織全体でこの問いを共有することで、皆が同じ方向性に向かって課題解決に取り組むことが可能となります。適切なイシュー設定は課題解決の成功に直結するといえるでしょう。 手法で問題を割り出す? また、これまで学んできたロジックツリーやプロセス分解の手法を活用することで、イシューを導き出す方法もあります。例えば、売上構成をロジックツリーで細かく分析し、問題を特定の要素(例えば、客数の少なさ)に収束させるといったやり方が考えられます。 ユーザー心理は理解済? さらに、自社サービスのウェブサイトに訪れたユーザーがどのような課題を感じ、最終的にどのような体験をしているのかについて、ユーザビリティテストを行わずとも自らイシューを見極めることが可能です。ユーザー行動に注目し、どの画面で何がわかりにくいのか、どのような心理を引き起こしているのかを把握することが重要です。 仮説検証の流れは? 具体的な取り組みの手順としては、まずチームで最も解決すべき問題(イシュー)を特定し、そのイシューに基づいてデータを精査します。その後、仮説検証を繰り返すことで、実際の課題や障壁を明確にしていく流れが効果的です。

アカウンティング入門

損益計算書と貸借対照表から見るテーマパークの軌跡

売上内訳をどう捉える? 今回の分析では、あるテーマパーク企業の財務諸表を用いて、損益計算書(P/L)と貸借対照表(B/S)の両面から検証を行いました。まずは、P/Lの構造に焦点を当て、売上高と売上原価の内訳を整理しました。売上に関しては、アトラクションやグッズの販売が主要な要素となっており、ホテル部門も売上に寄与していることが分かりました。また、サービス産業ならではの特徴として、売上原価に人件費が含まれている点や、減価償却費が大きな割合を占めていることにも注目しました。 B/Sの新発見は? 一方、B/Sの分析では、固定資産の大部分が土地と施設で構成されていることは予想通りでしたが、建設仮勘定の割合が高い点に新たな発見がありました。これにより、企業としてはアトラクションなどの非日常的な体験を提供することと、グッズ販売などによる付加価値の創出が、経営上重要な役割を果たしているという結論に至りました。 業績回復の背景は? コロナ禍により一時的に売上が落ち込んだものの、近年は業績回復が著しく、その動向から企業の経営理念、売上増大のためのメソドロジー、そして提供する価値に対する考え方を包括的に理解することができました。 分析から学ぶ戦略は? さらに、今後は自社を中心に据えつつ、他業界や同業他社、そして国内外の事例を取り入れた分析を進めることで、自社の経営戦略に生かしていきたいと考えています。そのためにも、財務諸表を一つのツールとして、企業情報の収集(ネットや生成AIを活用)や、さまざまな角度からの分析を、まずは簡単な形から始める取り組みが重要だと実感しました。

データ・アナリティクス入門

数字で見える学びの未来

どうして視覚化すべき? 数字に集約することと、目で見て理解することの大切さを再確認しました。纏めたデータをグラフ化するなど視覚化することで、ヒストグラムなどを活用しながらデータのばらつきを直感的に把握できる点が印象的でした。 比較で何が見える? また、データ分析は「比較」に基づく作業であり、仮説思考が重要だと感じました。分析のプロセスでは、仮説を立て、異なる視点とアプローチを用いることによって、より本質に迫ることができると理解しています。 代表値はどう使う? 代表値の使い分けと散らばり(標準偏差)を組み合わせる方法も興味深かったです。平均値や中央値、加重平均、幾何平均など、用途に応じた手法があるため、Excelで計算できることから複雑な計算式を覚える必要はなく、実務で活用しやすい点が良いと感じました。 成約率との関係は? さらに、営業活動のように暴露機会と成約率、またユーザーの購買意欲と成約数との因果関係を数値化する場合、代表値だけでなく標準偏差による散らばりを検討することで、ユーザーの傾向をより正確に導き出すことができると考えています。まずは仮説思考から取り組む姿勢が大切だと再認識しました。 グラフの魅力は? 最後に、提供される表形式のデータを様々なグラフで可視化し、検証のヒントを得る点も魅力的です。従来の平均値や中央値に加えて、標準偏差などの散らばりを取り入れることで、ユーザーの購買情報をより明確に把握できる可能性が広がっています。定性情報をいかに数値化してデータ分析に活用するか、その工夫が今後の課題であり、挑戦してみたいと感じました。

データ・アナリティクス入門

データ分析で見つけた新たな視点と仮説の立て方

データ分析の進歩を実感 これまでの実践演習のおかげか、ライブ授業の例題の際、自分が受講以前よりデータの着目ポイントがわかるようになったこと、仮説を複数出すことが怖くなくなっていたことに気付きました。また、ライブ授業の中で出てきた「やみくもに分析しない」という点も、性格上ハマりやすい沼だと思うので、優先順位を考えつつリソース配分を意識しながら分析したいと思います。 ディスカッションでの学び方とは? ディスカッション形式で例題を解くことで、人によってデータの見方や感じ方が違って面白かったです。一人でこっそり分析するよりも、複数人で話し合いながら進める重要性を感じ、実務でも活かそうと思いました。 新規事業におけるフレームワーク活用 新規事業を担当しており、これから多くの施策や企画を立ち上げる機会が増えると思うので、その際には効果的な施策を打ち出すために、問題解決のフレームワークを使って体系的に進めていきたいです。今回の講座で学んだ大きな収穫の一つは「振り返ることの重要性」です。グループワークを通して意見を交換し、その際に振り返りとして自分の考えをまとめる時間があったことが学びに繋がりました。施策を打った後も、その振り返りを必ず行い、次に活かせるようにしたいと考えています。 データをどのように活用すべき? 今後も引き続きデータ分析の講座や研修を積極的に受けたいです。実務レベルでは、常に仮説を持ち、複数の切り口からデータを分析・比較し、結果の検証を行うという順番を意識しています。一部のデータだけを見てすぐに判断しないように気を付けたいと思います。

データ・アナリティクス入門

仮説で見える新たな可能性

仮説の意義って何? この教材では、仮説の基本的な意義とその分類について学びました。結論の仮説と、問題解決の仮説に分かれており、特に後者は「What?→Where?→Why?→How?」というプロセスで問題にアプローチする点が印象的でした。 検証マインドは必要? また、検証マインドの重要性や、説得力の向上、関心・問題意識の向上、スピードアップ、そして行動の精度向上といった効果も理解でき、実務における検証のプロセスがいかに大切かを再認識することができました。 SNSで成果は出る? 実際のSNSキャンペーンでの活用例として、たとえば「ソーシャルメディアAが最も広告費対効果に優れているのでは?」という仮説を立てる方法が紹介されていました。過去の広告データを徹底的に分析し、どのプラットフォームが最もコスト効率が良いかを比較。その後、小規模なA/Bテストを実施して実際のパフォーマンスを検証し、最も成果が出たプラットフォームに予算を集中させるという具体的な手順です。 フレームワークは有効? さらに、仮説のフレームワークを実業務に当てはめるための補助ツールとして、4P(Product, Price, Place, Promotion)や3C(Company, Customer, Competitor)、そして問題の本質に迫るための5Why(なぜ?を5回繰り返す)といった手法が紹介され、実践的な視点が取り入れられていました。これらのフレームワークは、課題の分析や市場での自社のポジションの確認、そして問題の根本原因の探求に大いに役立つと感じました。

戦略思考入門

戦略再検証で輝く学び

実行前に何を見直す? 施策を実行する際には、持続性と模倣されにくさを意識することが重要だと感じました。良いアイディアが浮かぶと、その実行方法にばかり目が行きがちですが、一度立ち止まり、顧客価値、競合との差別化、実現可能性、費用対効果という観点からしっかりと分析することが求められます。 低コストの真価は? 戦略立案においては、上位層に受け入れられやすい低コスト化戦略に安易に頼る傾向があるものの、ターゲットを絞り自社の強みを十分に考慮することで、より適切な戦略選択が可能になることを学びました。実際に、私が関わっているプロジェクトでは低コスト化が重視されていますが、今回の学びを活かして、その方針が本当に最適かどうかを検証してみたいと思います。低コスト化は顧客が求める価値の一側面に過ぎず、購買決定要因はそれだけではないはずです。顧客の困りごとや、他に提供できる価値は何かについて、学んだフレームワークを活用しながら戦略を見直す必要があります。 目標価値はどう見る? まず、プロジェクトが掲げる目標が顧客にどのような価値を創出するのか、再検討を行います。その過程で、自社が他社に対して有利な点があれば、それを自社の強みや差別化の源泉として認識することが大切です。 顧客の課題は何? 次に、顧客の視点に立ち、彼らが何に困っているかを分析します。もし現在のプロジェクトの方向性が顧客の課題解決に適していないと判断される場合、顧客価値、競合との差別化、実現可能性を踏まえた上で、必要な施策をストーリーとして提案できるよう準備を進める必要があります。

戦略思考入門

業務集約で実現した驚きのコスト削減

市場と戦略は合致? スケールメリットといったビジネス戦略の定石を用いる場合、自社でそれが効果的に機能するかを正しく分析することが重要です。戦略を決定する際には次の段階を踏むことが大切です。まず、市場と自社の状況を分析し、自社が置かれている環境を正確に理解します。次に、定石となるビジネスのメリットやデメリットを検証し、比較します。最後に、効果が見込めると判断できたら実行に移ります。 業務集約の効果は? 自部署の業務では、100以上の拠点の業務を1拠点で代行するという形で集約しています。この業務集約は、製造業とは逆向きのスケールメリットを示していると考えられます。例えば、各拠点で個別に行っていた事務作業を1か所に集約することで重複作業を省き、コストダウンを実現しています。また、特定のメンバーで業務を集約することで習熟度が向上し、更なるコスト削減が可能になっています。さらに、AIや自動化技術を導入することで業務効率を高め、さらなるコストダウンが促進されています。 収益拡大の鍵は? ここで得たノウハウをしっかり蓄積し、それをコアコンピタンスとして外部収益の獲得につなげることを目指しています。現在進めている自社内の業務集約・効率化については、さらなる集約可能な工数を探求し、高品質化につなげていくことが求められます。また、外部収益獲得に向けてはターゲットとなる顧客層を明確にし、受託可能な業務範囲を想定して、必要な技術に関する知識を得るために注意を払うことが大切です。ターゲットを明確にし深掘りしていくことが、コアコンピタンスの形成に繋がるでしょう。
AIコーチング導線バナー

「分析 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right