クリティカルシンキング入門

小さな振り返りが大きな学びに

小さな仕掛けはなぜ? クリシンを効果的に実践するためには、日々の小さな「仕掛け」が大切だと実感しました。例えば、毎日10〜20分の学習時間を確保し、学習後には必ず一行でも振り返りを書くことで、自分の気づきや成長を記録することを意識しています。 どんな学習方法が有効? また、以下のような学習方法を取り入れることが有益だと感じています。まず、ニュース記事を一つ選び、主張・根拠・前提を分けてメモし、100字以内で要点をまとめる方法です。さらに、身近な課題に対してロジックツリーを作成し、「なぜ?」を三回掘り下げることで、根本原因を明らかにし、解決策を複数考える手法や、自分の意見に対して反対意見を三つ挙げ、どの意見が最も説得力があるか比較する練習も取り入れています。 思考力はどう養う? これらの取り組みにより、表面的な情報や過去の経験だけに頼らず、現状の課題を深く掘り下げ、物事の本質を見極める思考力が養われると感じます。 顧客へのアプローチは? 所属する営業部門では、まずお客様の真のニーズを発掘するため、表面上の反応だけでなく、その背景にある要因を徹底的に探ることを実践したいです。お客様が現時点で製品購入を必要と感じていない場合でも、その理由を深く掘り下げ、自発的な購買行動を促す具体的な戦略に落とし込むことが求められます。 論理的提案はどう実現? さらに、常に「なぜ?」と問い続けることで、見落とされがちな問題点を浮き彫りにし、課題の深掘りと仮説検証を徹底する姿勢を持ちたいと思います。これにより、社内ミーティングや商談の場面で、客観的かつ論理的な提案ができると考えています。 判断力はどう高める? 最後に、情報を客観的に分析し、思い込みや経験に頼った偏りを排除することで、判断力のクオリティを向上させることを目指します。これらの学びや取り組みを通じ、日々の業務の質の向上につなげていきたいと思います。

マーケティング入門

競合分析で見える自社の強みと課題解決のヒント

自社の強みをどう活用する? 何を売るかについて手当たり次第にお客様の困りごとを探すのではなく、自社の強みを活かせるものを探すことが重要だと改めて気づきました。そのためには、まず自社の強みをしっかり認識することが必要です。自社の強みは競合との比較の中で初めて明確になるため、自社の強みだけでなく競合の強みや弱みもきちんと分析する必要があると感じました。 効果的なヒアリング方法とは? また、困りごとの聞き方についても注意が必要だと再認識しました。「何か困っていることはありませんか?」という聞き方では、ほとんど情報が出てこないことを実際に経験しました。そのため、自ら仮説を立てた上でヒアリングを行うことが重要だと思いました。 産業用コネクタ開発の戦略 自社においては、新製品、具体的には産業用のコネクタの開発を検討しています。そのため、自社と競合の強みを改めて分析したいと思います。また、ヒアリングにおいては、既に一定程度認識しているお困りごとを解決できる製品コンセプトを検討し、ヒアリングシートや説明会を営業部と共有して、業界内の主要なプレーヤーへのヒアリングを実施したいと考えています。さらに、マーケターとして積極的にお客様訪問を重ね、業界のニーズや痛点の確認を進めていきたいと思います。 製品開発のための具体的ステップ 具体的なアクションプランとしては以下の通りです: 1. 現在の製品コンセプトとニーズや痛点を結びつける。 2. 技術部とコンセプトの実現に向けた事前打ち合わせを行う。 3. 実現可能性が確認できた場合、営業部と共にキープレーヤーへのヒアリングを実施する。ヒアリング時には業界の顧客ニーズを解決できる仮説を立てて行う。 4. ニーズの確認が取れたら、製品化に向けた社内検討を本格化させる。 このような取り組みを通じて、より効果的に市場のニーズに応じた製品開発を進めていきたいと思います。

クリティカルシンキング入門

反射思考を打破する問題解決法

直感判断、信頼できる? 実践的な場面に直面すると、つい反射的に考えてしまうことが多いと実感しました。人の思考には必ず偏りがあり、目の前の課題に対し、反射的に思い浮かんだ解決策をすぐに当てはめるのは避けるべきです。 その理由として、 1. 反射的に思い浮かんだ解決策は、自分の経験や限られた知識に基づいた発想である可能性が高いこと。 2. そもそも、そのことが本当に課題であるかどうかを検証していないため、無駄になる恐れがあること。 3. 解決策の目的に立ち返らないと、方向を見失い、無駄な労力を使う可能性が高いこと。 4. 解決策をMECEで考えないと、考え方に広がりが欠けること。 そのため、まずは何が課題なのかを最優先に考えるべきです。「ISSUE」こそが最優先です。このためには、最適な「問い」の設定が不可欠です。 目標設定は見直す? 身近な事例で考えると、「来場者を10%増やすためにはどうすればよいか?」という目標がありますが、その前に、なぜ10%が必要なのかを検証した方が良いです。そして目標を10%に設定した場合、そのための仮説を立て現状を分析します。この際、データを集めるだけでなく、視覚化することが大切です。具体的には、データをグラフにする、日別・月別・季節別に分ける、目的別・性別に分析するなどの方法があります。 課題はどこにある? さらに問題を明確にするために、ピラミッド・ストラクチャーを用いて広さと深さの視点で整理し、どこに課題があるのかを明確にします。その上で、課題への施策を洗い出し、優先順位を付けて実行します。 共有は大切か? 日々クリティカルシンキングを活用する場面が訪れるので、毎回面倒がらず、自分を批判するつもりで取り組みます。これを実践すれば、メンバーの中でクリティカルシンキングを知らない人が困惑するかもしれません。しかし、思考法を共有した上で実行することが重要です。

デザイン思考入門

現場の声で磨く課題解決力

共通課題は何だろう? 店舗のオペレーション課題解決においては、単に会議での発言や市場視察の情報だけを頼りにするのではなく、どの店舗でも共通する課題なのかどうかを十分に確認して定義することの重要性を実感しました。 定量と定性はどうなる? そのため、普段から実施しているアンケートなどによる定量分析と、ヒアリングや現場の観察を通じた定性分析を併用することを、これまで以上に意識していきたいと思います。特に、定性分析においてはコーディング手法の活用をすぐに実践する所存です。 ペルソナはどう捉える? また、現状を把握するだけでなく、具体的なペルソナを特定し、ユーザーの感情にまで思いを巡らせることが大切だと感じました。ペルソナをいくつか明確に意識することで、本当に解決すべき課題が何か、その根本的な原因は他にもないかと前提を疑いながら多角的に考える習慣が身についてきました。 課題定義は進む? 今後は自分一人にとどまらず、周囲のメンバーも巻き込みながら課題定義を進めていくつもりです。課題定義のフェーズでは、①問題の本質を捉える、②洞察の整理と可視化、③顧客課題仮説の作成、④ユーザー中心の視点の維持、⑤検証と改善という5つのポイントが重要だと感じました。 潜在課題に気づく? 中でも、カスタマージャーニーマップを活用する点と、顧客課題仮説を作成する際にシンプルで明確な課題文を構築する方法に大きな気づきを得ました。カスタマージャーニーマップはユーザーの行動だけでなく感情の流れにも着目することで、潜在的な課題を浮き彫りにしますし、明快な課題文はまだ気づかれていなかった潜在的な問題に気づく手助けとなります。 アウトプットは十分か? 最後に、ある講師の「学びの深さはアウトプットの量に比例する」という言葉が心に響きました。今後も実務を通じて、積極的にアウトプットを行いながら学びを深めていきたいと思います。

データ・アナリティクス入門

仮説思考で未来を拓く!

仮説のメリットは何ですか? 「仮説」とは、ある論点に対する仮の答えのことです。この仮説を用いることで、説得力の向上、問題意識の高まり、スピードアップ、行動の精度向上といったメリットがあります。仮説は目的に応じて分類され、さらに時間の経過を考慮して整理されます。例えば、過去の問題を解決する方法として仮説を立てることができます。 正しい仮説の見方は? 仮説を立てる際は、目の前の数字だけにとらわれずに俯瞰してみることが重要です。複数の仮説を決め打ちせずに立て、網羅性を持たせるためにさまざまな切り口を考慮します。また、都合のよいデータだけに頼らず、反論を排除するまでの検証が求められます。 仮説技法のコツは? 仮説を立てるテクニックとして、「なぜ」を繰り返して知識を広めたり、別の視点や時系列で考えることが挙げられます。また、ラフな仮説を作る際には、常識を疑い、新しい情報と組み合わせ、発想を止めないことが大切です。 リーダーはどう実践すべき? リーダーの役割として、仮説を検証するプロセスを習慣化するためには、率先垂範し、仮説と検証方法を常に考えることが重要です。また、質問を使ってコーチングを行い、チーム内での役割分担によるブレインストーミングやディスカッションを推進します。 新仮説はどう生まれる? 創造的な仮説を考えるためには、ビジネス内外の組み合わせや否定的な問いを投げかけると良いでしょう。そして、仮説、データ分析、検証方法をセットで考え、それをチームで共有することが求められます。 どう自己を再確認? 最後に、パッションを高めるための自問を言語化し、自分の生きがいやパフォーマンスを再確認することも重要です。これには、自分の目標を再確認し、現在の状況に対する考えを深めることが含まれます。こうしたプロセスを通じて、自身の成長とチームの成功を目指します。

データ・アナリティクス入門

仮説とデータで描く地方創生のヒント

仮説の見方は? ビジネスにおける仮説思考について、まず複数の仮説を同時に考え、それぞれに網羅性を持たせることが重要だと学びました。仮説を検証するためには、適切なデータを取得して比較する必要があり、その際には何を比較指標とするのかを意図的に選ぶことが求められます。たとえば、残業時間の増加要因として故障対応の増加が疑われる場合、単に故障件数だけでなく、1件あたりの対応時間も合わせて評価することが必要です。 情報収集の意図は? また、データ収集では意味のある対象から意見を聴取し、反論を排除するために必要な情報まで踏み込むことが重要です。さらに、実際のビジネス現場では、3Cや4Pといった分析の枠組みを活用して具体的な仮説を立てることで、解像度が高まり、個々の仕事に対する検証マインドや説得力が向上するほか、ビジネスのスピードや行動の制度が改善されることが分かりました。 過疎地域の課題は? 一方、過疎地域への移住促進においては、雇用の創出が鍵となります。人口が5000人以下の市町村では、産業の集積が不十分なため、相応の所得を得られる雇用を生み出すには、行政が主導して仕事づくりを進める必要があります。こうした雇用創出の一策として、総務省が制度化した仕組みがありますが、現状では本県で十分な成果が上がっていません。 事業展開のヒントは? この原因を明らかにするために、どのような業務に何人派遣しているか、また仕事の切り出し方についてデータを収集し、市町村担当者と情報を共有することが今後の事業展開のヒントになると感じました。現在、管内の1市町村で既に事業が展開されており、協力体制の可能性を検討しています。また、他の市町村でも類似の事業設立が検討されているため、たとえば損益分岐点を意識した事業計画の作成方法をケーススタディとして示し、過疎地域の課題解決につなげる取り組みを進めたいと考えています。

データ・アナリティクス入門

フレームワークで拓く学びの未来

3Cと4Pで何を探る? フレームワークの各視点を用いて仮説の可能性を広く検討することは非常に重要です。3C分析では、市場・顧客、競合、自社の観点から、誰が顧客であるか、市場の伸縮、競合の存在やその強さ、自社がどのようなサービスを提供し顧客のニーズを満たしているかを考察します。同様に、4P分析では製品、価格、場所、プロモーションの各要素に注目し、製品やサービスの質、価格設定、提供方法、そして効果的な販促方法について検討します。 戦略はどう立てる? フレームワークを用いて仮説を幅広く検討する姿勢は良好であり、各視点で具体的な議論に進めば理解がより深まります。例えば、3C分析から得られた仮説を基に具体的な戦略をどのように立案するか、4Pの各要素がどのように互いに影響しあっているかを考えることが課題となります。 事例分析は効果ある? ビジネスケースに実際にフレームワークを適用し、その有効性を確認することもおすすめです。引き続き学習を進めながら、現実の事例に即した検討をしてみてください。 医療M&Aの今後は? また、医療系M&A市場については、中小規模医療機関の承継ニーズの増大や医療費抑制政策の影響により、今後も活発な動きが予測されます。一方、競争の激化や規制リスクも存在するため、専門性の向上、デジタルトランスフォーメーションの推進、さらには事業領域の拡大が求められます。 AI・DXでどう変える? 具体的には、3C分析から得られた仮説をさらに充実させ、週次のミーティングで戦略の検討を行うことが考えられます。また、4Pの観点からAIを活用した企業価値評価による業務の効率化や情報発信の強化も有効です。加えて、DXの活用によるマッチング効率の向上、事業領域拡大に向けた人材育成と確保、さらには医療費抑制政策や規制強化への迅速で正確な情報収集の自動化も検討すべき課題と言えます。

データ・アナリティクス入門

データ分析でビジネスの謎を解く方法

売上判断で何を比較すべきか? 売上の良し悪しを判断するとき、「大きい」「小さい」「高い」「低い」などの表現を用いる場合、必ず何と比較しているかを示すことが重要です。この比較によりデータの加工を行うと、さらに新たな視点が見えてきます。 代表値とデータ分布をどう見る? まず、データの特徴を一つの数字に集約して捉えます。代表値や平均値を見るとき、その数字だけで判断せず、データの分布も合わせて考慮する必要があります。 データ視覚化の重要性は? 次に、データを視覚的に捉えることが重要です。データをグラフ化、ビジュアル化することで、データ間の関係性を視覚的に捕えることができ、特徴の把握や解釈、仮説立案が容易になります。目的に応じて適切なグラフ(円グラフやヒストグラムなど)を選ぶことで、比較・分析がしやすくなります。 数式で関係性を捉える方法は? さらに、数式を用いて関係性を捉える方法もあります。代表値として単純平均、加重平均、幾何平均、中央値、そして散らばりを示す標準偏差を利用します。単純平均だけでなく、他の代表値もしっかりと使いこなすことが求められます。 仮説検討で何を探る? これらの手法を用いて数字を算出し、比較することから仮説を立て、傾向や問題点を見つけるには、個人の経験や知識、世間の動向やトレンドを把握することが重要です。月次報告書にこれらの比較方法を取り入れ、仮説の立案までをセットにし、分析報告をまとめることが目標です。 来週火曜日の報告までにすべきことは? 来週火曜日に役員へ報告する資料が必要です。この資料は、単に実績を表としてまとめるだけでなく、そこから読み取れる傾向も分析し、上司に報告する内容にしたいと考えています。仮説については、実際の現場の責任者とも会話し、その仮説にどれほどの差異があるかを検証し、次回以降の仮説検討の際に参考にしていきます。

データ・アナリティクス入門

問題解決へのアプローチを学ぶ

原因をどのように探る? 原因を探究することについて学びました。問題の原因を明らかにするためには、その問題に至るまでのプロセスを分解して考えるアプローチがあります。複数の解決策を用意し、それらを判断基準の重要度に基づいて根拠をもって絞り込むことが重要です。 データ分析の精度を高める方法は? 具体的なステップを踏んでデータを分析し、問題解決の精度を高める方法や、仮説を試しながらデータを収集し、より良い解決策に繋げる方法を学びました。これら両方のアプローチを組み合わせることで、データ分析の精度を一層高めることができます。例えば、「自分の残業時間」について考えてみると良い練習になります。 A/Bテストはどのように進める? 【A/Bテストについて】 A/Bテストとは、二つの施策を試し、比較するテストです。目標の設定から始まり、改善ポイントの仮説設計、実行までのステップを踏みます。優位なデータ数が集まるまで行い、その期間内で検証を行うことが重要です。目的と仮説を明確にし、シンプルで低コストかつ少ないリスクで運用できるようにすることが求められます。 残業問題をどのように解決する? 試しに「自身の残業時間」の多さについて考えてみました。棚卸できる業務をその場しのぎで抱えていたり、時間割やスケジュールの把握が疎かになっていたりと、整理すべき項目はいくつか見つかりました。複数の解決策を導くためには、まだ整理しなければならない複合的な原因が残っていますが、「有耶無耶」な部分を明確にすることで解決策が見えてきました。 今後の課題解決のステップは? 今後は、メンバー個別の面談や少人数のミーティングを通じて、現在の課題を一緒に洗い出し、原因を突き止めてみることを実践したいと考えています。そして、仮説を立て、複数の解決案をもって組織としての意思決定や問題解決に繋げていきます。

データ・アナリティクス入門

分析で見つけた新たな発見と気づき

比較による効果測定とは? 分析とは、比較することである。まず、分析する項目を整理し、各要素の性質や構造をはっきりさせることが重要だ。何かの効果を測りたい場合、「ある」場合と「ない」場合で比較を行い、分析対象以外の条件も整える必要がある(これは「Apple to Apple」と呼ばれる)。 データ分析の目的と仮説 データ分析を行う際には、まず目的と仮説を立てる。例えば、データ分析の目的は何で、その結果どのような状態を目指すのかを明確にすること。そして、どの項目を分析すれば目的を果たせるのか、その項目をどのようにデータ加工すれば良いのかを考え、具体的な仮説を立てることが大切だ。 適切なデータ加工と表現法 データにはその種類に応じた加工法やグラフの見せ方が必要である。割合で表現するのが適切な場合と、実数(本来の値)で表現するのが適切な場合がある。また、質的データ(数値の大小に意味がないもの)と量的データ(数値に意味があるもの)の違いを見極める必要がある。 人事部門のデータ活用法 人事部門では、健康経営やエンゲージメントに関するデータを扱い、改善に向けた施策を企画することが多い。このため、データを活用して課題解決や目標達成のためのPDCAサイクルを効果的に回せるようにすることが求められる。これまでの施策参加者がどれだけ改善したか、「参加した人の中で●●をした人はより■■だった」といった分析を行うが、このためには、参加者と不参加者の間での比較を行うことが重要だと感じている。 目的設定と議論の重要性 まずは、目的を明確にし、自分自身の思い込みや仮説に偏らず、上司やメンバーと徹底的に議論することが必要だ。次に、課題に対して目指す姿を定量的にKPIとして設定し、現状を把握する。算出するデータに定義と根拠を持ち、それを分かりやすく伝えるスキルを身に付けることも重要である。

クリティカルシンキング入門

切り口で明かす学びの本質

データはどう見切る? データの切り方によって、同じ数字でも見える課題や傾向が大きく変わることを実感しました。目的を明確にして「何を見たいのか」を意識した切り分けを行うことで、漠然と眺めるだけでは気づけなかった本質が浮かび上がり、無駄を省いた的確な分析が可能になると感じています。 MECE活用は有効? また、MECEの考え方を取り入れて整理することで、重複や見落としを防ぎ、全体像を正確に把握できるようになりました。その結果、何が起こっているのか、どこに手を打つべきかを論理的に説明でき、相手にも納得してもらいやすくなると学びました。 支援でどう効果発現? たとえば、新規事業の構想支援では、顧客層、提供価値、チャネル、収益構造などの視点で情報を整理することで、情報の抜けや重複を防ぎ、相手の納得感を得て意思決定をスムーズにする効果を実感しました。 組織開発の整理法は? また、組織開発の現場では、ヒアリングした内容を「構造」「風土」「スキル」「制度」といった切り口で整理することにより、課題の全体像や優先順位が明確になり、具体的な施策立案につながっています。 研修・講演はどう整理? さらに、研修や講演の場面でも、参加者にとって複雑なテーマを目的に沿って段階的に分解して提示することで、理解と納得を引き出す効果がありました。オンラインでのクライアントとの対話やレビューの際にも、現在の視点や抜け漏れ、そして本質を可視化することで、共通理解と納得感のある議論が進められると感じています。 学びを今後どう活かす? 今回学んだ「切り口の工夫」や「MECEの視点」は、事業開発や組織開発の現場で、初期の仮説立てからヒアリング結果の整理まで非常に役立つと実感しています。今後はこれらの手法を意識的に活用し、ツールを組み合わせながら日常業務に継続的に取り入れていきたいと思います。

データ・アナリティクス入門

一歩踏み出す再学習の軌跡

全体像を再確認? これまでの学習内容を振り返る中で、全体像を再確認できたと感じています。毎週の講義では、個々の演習を通じて内容を確認する機会がありましたが、連続性が不足していたため、先週と今週の学習でその点が整理された印象を受けました。また、従来のやり方や考え方にとらわれがちであることを学びの中で指摘され、再度学び直す必要性を実感しました。 特許情報の活用は? 環境分析においては、特許情報と非特許情報を組み合わせた手法のニーズが高まっていることから、今回の学習で得た知識や手法を取り入れていきたいと考えています。特に、分析は比較が前提であることや、「目的」の重要性について、チーム内での認識が揺らがないよう常に確認する点、そして仮説志向で同じパターンに偏りがないか、使用するデータが適切かを検証すること、さらにWhat-Where-When-Howの観点から確認と検証を行うことが必要です。 データ分析の課題は? これまでの業務を振り返ると、部署や立場が異なるチームでデータ分析に基づく活動を進める際、結果を重視した分析や、データから無理に仮説を導いたり、エイヤーで問題設定を行ったりしていたことに気付きました。今後は今回学習した流れをもとに、自らの手でハンドリングできるよう、実践の機会を積み重ねたいと思います。 問題解決の手順は? また、データ分析に限らず「問題解決のSTEP」を意識して業務に取り組むようになりました。分析を進める過程で、常に「目的」の認識に相違がないか確認し、スケールの大きい要求に対しては漠然とした要求を細分化し、より適切なデータ分析とアウトプットが実現できるよう努めたいと考えています。まずは、自分が担当するチームの開発テーマや製品の規模に合わせたデータ分析を実施し、その結果を第三者であるチームに説明することで、考え方や手順の定着を図っていきたいです。

「分析 × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right