クリティカルシンキング入門

疑いが拓く学びの扉

本質をどう捉える? 本質的な課題を捉えるためには、まず目的を明確にすることが大切だと感じました。何のために、何を問うのか、その根底にある本質に迫ろうとする中で、当たり前と思い込んでいる事柄に疑いの視線を向けると、より本質に近づけるのではないかと思います。また、その問い方は単純な二者択一に終始せず、柔軟な姿勢を保つことが重要です。問いは一度限りではなく、何度も継続して行うべきで、その際、視点が偏らないよう多角的に分析し、具体的な実践を心がける必要があります。統計的なデータやその分析手法も、このプロセスにおいて有効なツールとなるでしょう。 本当の課題は何? 私はIT業界で働いており、この考え方は特に要件定義工程で役立つと感じています。本当にその機能が必要なのか、ユーザの真の課題は何か、また解決策がユーザ側の視点から見て適切かどうか、といった検証が必要な場面です。さらに、バグや障害対応においても、なぜ問題が発生したのか、どのタイミングで混入したのか、過去の事例と比較することで原因を追求する際に、このアプローチは有用です。開発プロセスの改善やリスク管理の分野でも、「今までのやり方が正しいのか」という疑念を持ち続け、常に振り返りながら改善を図る上で効果的だと考えます。 問いの立て方は? 「本質的な課題を捉える問いの立て方を身につける」ための行動計画としては、まずは疑いながら考える習慣をつけることから始めます。仮説を立て疑うことを日常に取り入れ、必要な理論や手法を書籍や研修を通して体系的に学びます。その後、実際の会議や小さなチームミーティングで本質的な問いを繰り返し投げかけ、意識を高めることを目指します。実践後は振り返りを行い、その結果を次回に活かすというサイクルを繰り返すことで、確実に身につけていけると考えています。

データ・アナリティクス入門

問題解決のプロセスで成果を出す方法

「Why」と「How」の探求は? 問題解決の4つのプロセスのうち、最後の2つである「Why(なぜ)」と「How(どのように)」について考えました。問題の原因を明らかにするために、プロセスを分解し、どの段階に問題があるのかを特定します。そして、解決策を検討する際には、複数の選択肢を洗い出し、それぞれの根拠を持って選定します。 学びをどう生かすか? これまでの学習でも、都合の良いデータばかりを集めないことや、仮説思考で柔軟に考えることの重要性を学んできました。同様に、「How」についても決め打ちせず、複数の選択肢を洗い出し、判断基準を設け、重要度で比較して解決策を選ぶようにします。 A/Bテストの手法とは? また、A/Bテストについても学びました。複数の案を条件を揃えて比較し、評価する手法です。複数の案を実際に試し、反応を確認しながら仮説検証を繰り返して評価します。ある事例では、スピードが重要で3ヶ月も待てないため、同時にランダム表示を選択しましたが、条件を揃える理由に納得しました。 黒字化への挑戦は成功? ちょうど今週、この学びを生かす機会がありました。自部門の数字が黒字にならない原因を考える場面があったのです。これは長年の問題で、まだ解決に至っていません。今週の学びを基に、原因や解決案を決め打ちせず、プロセスに分解し、複数の仮説を立て、根拠となるデータを示しながら解決策に向けた対策を考えていきたいと思います。 残業時間の原因は何か? 最後に、自身の月々の残業がなぜ80時間に達してしまうのかについても、4つのプロセスを用いて考えてみることにします。さらに、Q2で記載した問題の原因について、ある程度仮説を立てています。それらの仮説が正しいかどうか、データを用いて分析することを早速始めてみます。

データ・アナリティクス入門

データ分析でビジネスの未来を予測する方法

分析の目的と手順は? 分析は、比較(増減や時系列の変化、数字の意味)と何を明らかにするかの仮説が重要です。仮説を立てる際には、逆算思考で分析結果の見せ方や投入時間などを考慮します。課題解決のプロセスでは、自己の中でプロセスを明確にし、目的や狙い、コンセプトを先に確立することが大切です。その後、問題を特定し、どこに問題があるのか、なぜその問題が発生したのかを明らかにした上で、どのように解決するかを考えます。 データ分析で課題をどう解決する? ビジネスにおいてデータ分析を行う際には、まず現状と理想のギャップを見つける問題発見力や課題形成力を磨く必要があります。そして、課題解決の仮説を立て、自由な発想と未来からの逆算を用います。次に、客観性を備えたデータ収集を行い、そのデータを加工し、考察と未来への洞察力を磨きます。 新しい取り組みへの挑戦 漠然と総花的な活動に陥りがちで、あれもこれもと欲張ってしまうことが課題です。採用戦略や事業計画策定の際には、採用市場データの分析スキルを評価することが求められます。定性と定量の分析をビジュアル化し、仮説を持ってデータ収集と分析、考察を効率化します。毎年の活動には、新しい取り組みに挑戦することが求められます。最新情報へのアクセスや情報分析から、課題解決策の提案力を高めて引き継ぎます。 ロジックツリーで何が見える? ロジックツリーを用いて、課題(大学・高専との関係強化構築)や採用市場の傾向(少子化・18歳人口の激減、高学歴化・編入進学、高度人材の活躍など)を整理し、それらを明確化、細分化します。これにより、人材獲得のチャンスを検討します。実践を通じて学んだことを自分の活きた知識とするとともに、書籍や研修を通じて知識をアップデートし、実践能力の向上に努めたいです。

データ・アナリティクス入門

仮説検証で未来を切り拓く挑戦

仮説の再考は? 仮説の分類について考える際、私は従来「問題解決を過去から見る」観点に主眼を置いていました。しかし、仮説全体を見直すうちに、「結論や未来を予測し、仮定の上、検証する」点には十分踏み込んでいなかったことに気づきました。 視野を広げるとどうなる? そこで、仮説全体を見る際には、結論や未来の予測を含む多角的な視点を持ち、バイアスにならないよう視野を広げて考えることが重要だと感じました。結論、つまりゴールから出発しデータを集めて検証していくものの、その過程で手戻りが発生し、結果として何度もデータを再確認することがあります。こうした経験から「方向性を見いだせて初めて動き出せる」という体験を増やしてみたいと思いました。時間効率を意識することで、普段の行動に留まりがちになりますが、時にはうまくいかないことを試みる勇気も大切だと考えています。うまくいかないことから得られる手戻りや試行錯誤の過程は、生産効率を低下させる一方で、自己を納得させるための貴重な材料にもなります。 根拠に基づく行動は? 行動計画としては、「仮説を立てる」にあたって、数字に基づく根拠やフェルミ推定を活用し、意思決定において経験則に頼らず新しい立ち位置を見つけることを目指します。また、これまで行ってきたお客様の離脱予測を、仮説をもとに見直し、データ収集を通じて有効な改善策を模索していきたいと考えています。 データの真実は何か? さらに、KPI関連指標については、チーム単体での目標達成がデータ分析を経ないままであったことを反省し、達成の要因を深掘りすることで、本当に正しい事業活動を行えているかを検証します。他チームや類似業務との比較を通じて、データ取得し仮説を立て分析を行うことで、一層の改善を図っていくことを目指しています。

データ・アナリティクス入門

データ分析で未来を変える振り返り

分析の本質をどう理解する? 「分析は比較なり」という言葉に触れ、データ分析の本質を理解しました。特に分析の重要な要素を短く表現していると感じ、講座の印象に残っています。具体例では飛行機の比較がありましたが、欠損部分を答えと思ってしまいました。この講座を通じて、すぐに正しい結論を導けるよう、考え方を習得したいと思っています。 分析前の準備は何を意識する? 次に、分析前の「目的」と「仮説」が重要であることを学びました。これまでは仕事の中でしばしば「分析しておいて」と言われ、提案書の内容やグラフの色選びで迷うことが多くありました。これらの悩みの原因は、分析の目的や仮説の前提が欠けていたことに気づきました。この気づきにより、目の前の作業に集中するのではなく、前提意識を持って取り組むことで、提案書の質やクライアントへの説得力が大きく改善されると感じました。 理想の分析へどう向かう? 「言語化・教訓化・自分化」の実践においては、理想の姿を描く際に不足を感じ、反省しました。本講座を通じてこれを意識的に学び、活かしたいと思います。また、内部環境や外部環境のデータ分析でこれらの考えを活用できると感じました。 必要なデータはどう見つける? まず、データ収集の場面では、市場やクライアントの会社を分析時に、どのデータが必要か考えることができます。クライアントに提供するデータについて考える場面にも役立つでしょう。 提案書作成で重要なポイントは? 分析前に重要なのは、「目的」と「仮説」であり、提案書へ表現する際には、明確な目的に基づいて、適切なグラフや色の選択を行うことが大切です。また、分析を進める間にも都度結果を確認し、方針の変更がないかチェックすることで、目的に沿った貴重な分析を行いたいと考えました。

データ・アナリティクス入門

挑むデータ、拓く未来

データで信頼築ける? データが少ない状況では、医者の診断も検討はずれになりがちです。そのため、血液検査や各種データの収集、統計や原則に基づいた仮説の設定、そして一定期間の経過観察と検証を重ねることが求められます。こうした一連のプロセスは、日常生活の延長線上にある行為とも言え、直感に頼るのではなく、データを根拠とした理論的な意思決定に楽しさとやりがいを感じています。 どう伝えるのが良い? 日本の人口のごく一部がクリスチャンであり、その中でも特定の宗教団体に所属する会員はさらに限られています。残りの多くの人々に対して、回復された福音をどのように伝えるかという大きな課題に取り組んでいます。SNSやインターネット、テレビ、新聞、雑誌、口コミ、広告トラック、アドバルーンなど、さまざまなメディアを駆使し、目標達成の手法を模索中です。 伝わりにくいのは? もし、ひとりの会員が教会のことを知らない多数の人々に対して、漏れなく情報を伝えられたなら、その印象は全体に広がるでしょう。しかし、伝達だけではなく、クリック率やコンバージョン率といった指標を通じて、実際に人々の生活に喜びをもたらす変化を実現するまでには、段階的にその数が絞られていくのも事実です。それでも、たとえひとりのためであっても、自分のデータ分析が役に立つのなら、人生を賭ける覚悟で取り組むべきだと感じています。この講座と出会い、周囲から良い影響を受けられていることに感謝しています。 成果の極意は何? 毎週、成果を最大化するためのアイデアを考える時間を意識的に持ちたいと思います。インスピレーションが降りることを期待しながら、今週はABテストを実施してみようと考えています。データと真摯に向き合いながら、突破口を見つけ、進むべき道を探し続けたいです。

データ・アナリティクス入門

チーム力で見つける新しい発見と成長

6週間の振り返りと学び 6週間の総まとめをLive授業で振り返り、演習として実践することができました。時間は限られていましたが、ブレークアウトルームでのディスカッションが非常に有意義でした。他のグループの発表やチャット欄での投稿から、同じ題材でも切り口や発想が異なる点も興味深かったです。 アウトプットの重要性を実感 アウトプットの重要性と他の人を巻き込み、様々な視点で物事を考えることの重要性や効果を実感しました。データ分析は週次のチームミーティングでの前週の結果分析や当該週のアクションプラン策定に活用しています。本講座で学んだ考え方や進め方をチームメンバーにも浸透させるため、常にアウトプットを意識していきます。 分析と仮説構築の大切さ 特に以下の3点を大切にしていきます。 1. 分析とは比較すること 2. 仮説の引き出しの持ち方 3. 仮説構築に各種フレームワークを活用できること 新しいスタイルの効果は? アウトプットを通じて自分自身にも自然に身につけ(体得する)状況にまで持っていければと思います。 Q2に記載した場面での活用を考えていますが、その進め方には特に注意を払いたいです。最初に自分の分析結果を示してからメンバーの意見を聞くのではなく、前週の結果やトレンドを全員で確認し、その上でどのような仮説や原因が考えられるかをチームで検討します。そして、その上で自分の分析結果や仮説を共有することを意識して取り組みたいと思います。 得られる効果への期待 このスタイルにより、以下の効果が期待できます。 1. バイアスをある程度取り除ける 2. 自分自身が思いもつかなかった仮説を認識できる これまでのスタイルから変えていくことで、どのような結果が得られるのか楽しみです。

データ・アナリティクス入門

データで見える真実: 分析の新たな視点へ

重要な三つのポイントとは? 私が特に重要と感じた点について整理すると、次の三つが挙げられます。 まず、「分析は比較なり」という点です。物事を細分化して整理し、各要素の性質や構造をはっきりさせることが求められます。また、具体的な比較対象や基準を設けることで、状態を把握しやすくなり、意思決定もしやすくなります。 データ分析の目的確認はなぜ大事? 次に、「データ分析を始める前に目的の確認をすること」の重要性です。仮説を立てて取り組むことが強調され、目的と照らし合わせながら比較することで、目に見えない情報を想像しながらの分析が可能になります。 最後に、「Apple to Appleになっているか」の確認が重要です。不適切な比較対象を避け、意思決定に役立つ分析を行うよう心がけなければなりません。 グラフの可視化はどう変わる? また、グラフの可視化においても学びがありました。データの種類に応じた加工法やグラフの見せ方を学び、「どんなデータを」「どう加工するとわかりやすいか」をより意識する必要があります。これを企画ごとのデータ分析に役立て、反響率や成約率、属性やエリアなど、比較すべき視点が今まで以上にあることに気づかされました。 実践にどう活かすか? さらに、作成するグラフの可視化方法についても実践していきたいと感じました。分析の本質をチーム内で共有し、分析に取り組む前の目的の明確化を意識することが必要です。そのうえで、これまで出してきた分析指標が正しい比較だったのか、新しい視点はないかを見直し、より良い意思決定に役立つものにしていきたいと思います。 企画運営の課題を定量分析によって発見し、根拠のある提案ができるようにするために、まずは学びを実践していくことが大切だと感じました。

マーケティング入門

ターゲットの先に魅せる未来

ターゲットを見極めるには? ターゲット設定のプロセスは、誰に何を売るのかを明確にする上で非常に重要だと実感しました。市場調査を通じて、ターゲット顧客のニーズをより深く理解し、そのニーズに響く価値提案や戦略を具体的に定めることが、効果的な営業戦略につながると感じました。 自社の強みをどう伝える? また、自社製品の魅力を正確に伝えることや、自分自身の強みを相手に伝える技術の向上が、営業活動において成約に大きく影響すると理解しました。日々のコミュニケーションスキルの改善が、信頼関係の構築において不可欠であると再認識しています。 新製品の差別化は? 新製品の企画段階では、これまで想定していなかった観点から差別化ポイントを抽出する方法が今後も役立つと感じました。市場調査の知識を活かし、ターゲット顧客のニーズや最新のトレンドを正確に把握することで、競合他社との差別化を明確にし、商品コンセプトをより強固なものにするアプローチを学びました。同時に、適切な価値提案と効果的なプロモーション戦略の構築が重要であると理解できました。 売上向上の秘訣は? さらに、既存製品の改良や販売促進活動においては、顧客からのフィードバックをしっかり分析し、マーケティングミックス(製品、価格、場所、プロモーション)の最適化を図ることが、売上向上につながる施策の立案に役立つと感じています。 仮説はどう検証する? 加えて、自社製品の特性やターゲットについて、従来とは異なる視点で検討するディスカッションを行う中で、仮説に基づく施策立案の可能性を見出しました。仮説を立てた上で、スモールスタートで実施し、その効果や結果についてなぜうまくいったのか、または課題があったのかをしっかり検証していく重要性を改めて実感しました。

データ・アナリティクス入門

実践で分かる分析の極意

基本原則は理解できた? 今週は、ライブ授業を通して6週間の学習内容を実践演習で総まとめしました。初めに、1週目から学んだ基本原則に基づく比較分析や、データの種類に応じたグラフの加工・表現方法を改めて確認しました。また、データ分析を始める前に、目的や仮説の重要性についても再認識する機会となりました。 プロセスは理解できた? さらに、問題解決のプロセス(What・Where・Why・How)や分析のステップ(仮説構築・データ収集・データ分析・仮説検証)を実践する中で、やみくもな分析を避けることや、アウトプットのイメージを持ってデータ収集を行う大切さを痛感しました。 キャンペーン分析は進んでる? 私の業務では、電子マネー決済によるキャンペーンの分析を行っており、決済データをもとに利用者の定性情報や行動パターンを把握することで、決済回数や決済金額の増加に向けた施策の提案や効果検証を進めたいと考えています。 目的は明確になった? 現状の課題は、データ分析の目的や分析する内容が関係者の間で曖昧になっている点です。そこで、まずは分析の目的や問いを明確にし、何を分析するのかを関係者間でしっかりと共有・可視化する必要があります。目的や分析対象が定まれば、データ収集を実施し、その結果をもとに仮説構築を進めます。仮説構築の際も、重点的に検討すべき点を明確化し、関係者と共有していくことが重要です。 施策は具体的になった? また、現状分析では、各種フレームワークを活用しながら、問題点やその原因、そして打ち出す施策を具体的に明確にすることが求められます。最後に、データ収集および仮説検証の結果は、関係者にわかりやすく説得力のある形で伝えられるよう、適切なグラフを選んで可視化し、報告していく予定です。

戦略思考入門

しつこく考え抜く戦略の極意

戦略活用の難しさは? 戦略に関する知識を得ることは簡単ですが、それを実際に活用する際には多くの困難が伴います。ただ単に表面的な発想に頼らず、しつこく考え抜くことが重要です。また、なぜ大企業がその案をこれまで実施しなかったのかを理解することも、戦略策定には欠かせません。自分が最初に思い付くものは稀で、多くの場合、大手や競合も同じアイデアに至ったものの何らかの理由で実現していない可能性があります。自社でできる理由を見つけ、それを基に差別化を図ることが重要だと感じました。 提案の根拠は何だろう? 施策を提案する際は、自社がそれを実施できる根拠をしっかりとつなげる必要があります。現代においては、リソースが限られ、従来のように市場の先を行くリーダー戦略を活用するのは難しいです。初期投資や損益分岐点をしっかりと試算し、どのタイミングでどうであれば成功か失敗かの基準を定めることが大事です。これらの基準を前もって設定しておけば、冷静な判断軸を持てます。そのため、これを意識していくことが必要だと考えます。 徹底調査の意義は? また、妥協せず徹底的に調査する姿勢を持つことも重要です。今後、業務において提案する機会がありますが、その際には自分のアイデアに対して常に批判的な視点を持つよう意識するべきです。「なぜ」を繰り返し問い、批判的に思考することで、より正しい提案を進めていくことができます。 成功基準の決め方は? このプロセスには、以下のステップが重要です。 1. 仮説が論理的に固まるまでしっかりと調査・分析を続ける。 2. 批判的思考を用いて、反対意見に対する答えを十分に検討する。 3. 競合や大手企業に対する対策や、それができない理由を考える。 4. 実施前に成功と失敗の指標を設定する.

クリティカルシンキング入門

批判的思考で深める分析術

本当に合っているか? 大前提として、「その答えは本当に正しいのか?」と自分自身に問いかけ、批判的に考えることが重要です。以下の手法を活用していきたいと思います。 整理のポイントは? まず、データを視覚的に整理し、合計や割合、昇順下降順で加工することで視覚的に情報を得られるようにします。全体を定義したうえで、漏れがなく重複しないように(MECEの原則に基づいて)分解を行います。この際、「いつ」「誰が」「どのように」という切り口から考えることがポイントです。 どの角度で考える? さらに、分析を効率的に進めるために型やフレームを身につけることが大切ですが、まずは手を動かし、そこから見えてくるものに対し「この角度はどうだろう?」や「この視点に漏れはないだろうか?」と批判的に思考を繋げていきたいと思います。 分析の仮説は? 営業戦略やプロジェクトの方針を検討する際には、営業データを多角的に収集することを心がけます。しかし、現状の分析が広がりすぎてしまう傾向があるため、大まかな見立てを立て、仮説を持って分析を行えるようにしていきたいです。 伝え方の工夫は? また、分析結果や方針を伝える際には、データを視覚的に整え、受け手の理解を深める努力をしたいと思います。具体的には、次のことを心がけます。まず、業務が「誰にとっての」「何のための」「どこまでをゴールにした」ものなのかを明確にします。そして、事象を分析する際には、必要なデータが十分に揃っているか確認します。作業を進める中で、分析に漏れがないか、異なる角度から検討が可能かを一度立ち止まって考察します。最後に、データを視覚的にわかりやすく作成することで、自身の分析にも役立ち、他者への説明の際にも理解しやすくなるよう努力します。

「分析 × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right