戦略思考入門

戦略フレームで未来を切り拓く

市場環境はどう見る? 勝負を決めるのは顧客や市場の環境であると実感しました。講義では、PESTや5Force、VRIO分析といった各フレームワークを活用しながら、環境やニーズを整理し、自社の強みや基本戦略を検討していく流れが紹介されており、戦略検討のプロセスについて具体的に理解することができました。 PESTをどう捉える? まず、PEST分析では、環境を漠然と捉えるのではなく、各要素をテーマに沿って洗い出し、その中で影響の大きいものを特定することで、どのような状況に繋がっていくのかを考察することの重要性を学びました。これにより、戦略策定に向けた有益な情報源として活用できる点が印象的でした。 5Forceはどう見る? 次に、5Force分析では、売り手・買い手の関係や新規参入、代替品といった軸で業界の現状を整理し、未来に向けた予兆となる因子を明確に洗い出す意義を再認識しました。これにより、変化する状況に対応するためのシナリオプランニングが可能になると考えています。 基本戦略を学ぶ? また、ポーターの3つの基本戦略については、競争優位の幅とターゲットの広さを軸に、コストリーダーシップ、差別化、そして集中戦略がどのように検討されるべきかを学びました。特に、一点集中には環境変化によるリスクがあるため、複数の戦略の両立可能性を意識することが大切だと感じました。 VRIOで見抜ける? 今回初めて学んだVRIO分析では、模倣困難性が重要な鍵となる点に強く共感しました。価値や希少性を含めた要素を有効に活用できる組織力が、持続可能な競争優位に繋がると理解しました。社内の暗黙知や独自の仕事の仕方を仕組み化し、共通言語・企業文化として定着させることが、他社には容易に真似できない大きな強みになると考えています。 未来戦略はどうする? これらの学びを踏まえ、改めて高品質なモノ・コトの提供に向け、自分たちの顧客像を具体化し直す必要を感じています。企画開発からアフターサービスに至るまで、直接・間接的に関わる領域全体を俯瞰し、自社の強みや差別化の方向性をVRIO分析など各フレームワークを活用して検討していくことが重要だと思います。現状の競合他社との比較に留まらず、業界全体を意識してシナリオを複数想定し、上位層も納得できる戦略の選択肢を示せるようにしていきたいと考えました。

マーケティング入門

ターゲットと価値の新発見!魅力倍増プラン

誰に向ける思いは? 「誰に何を」の「誰に」の部分の重要性を学びました。特に、現在取り扱っているSaaSサービスでは、開発側の「誰に」の思いが先行しがちだと感じています。もちろん、思いは大切ですが、想定している市場に十分なポジショニングがあるか、自社製品が届けることができる価値が十分に感じられる対象であるかを客観的に分析したいと思います。また、複数の価値を組み合わせて提供することで、価値を最大化する意識を持ち続けたいです。 魅力伝達はどうする? プロダクトの強みやアピールポイントを考える際、アピールポイントとそのターゲットを一対一で考えがちでした。今後は、複数のアピールポイントを組み合わせて、より魅力的な形で伝える視点を重視していきたいです。 訴求対象は何処? ①プロダクトを訴求するターゲット検討の場面では、クラウド型サービスの特性上、ターゲットを見直し、開発のロードマップを検討する必要があります。現状、開発側の「誰に」の思いが先行しがちな状況なので、今回学んだ「想定したターゲットに関する市場規模の確認」や「バックオフィス向けサービスの概念の見直し」を行いたいです。 認知施策は何が鍵? ②ターゲットへの認知獲得からコンバージョン(CV)の施策やメディア内容の検討では、開発したプロダクトのメリットを洗い出し、ポジショニングマップを作成したいと考えています。このポジショニングマップを共通言語とすることで、チーム内でも一致した訴求ポイントや施策検討が行えるようにしたいです。 市場規模は再確認? まず、現在のターゲット市場規模を確認し、売上見込みの再評価から始めたいと思います。そして、バックオフィス向けのプロダクトが経理部向けという状況を見直し、本当にメインターゲットが経理部でいいのか再確認します。そのためには、考えうるターゲットを再度洗い出し、各市場規模を整理し、6Rのフレームワークで判断を確かなものにしたいです。 差別化の強みは? プロダクトのメリットを洗い出す際には、「クラウド」「AIの活用」「多言語対応」「UIの良さ」などを挙げ、それらを組み合わせることで、他社との差別化を図ることを目指します。このプロセスは一人で行うだけでなく、チームで行い、新たな強みやポジショニングを発見するとともに、チームで一貫したポジショニングイメージを共有したいと考えています。

マーケティング入門

マーケティングの新視点で未来を切り拓く

どうして考え変わった? マーケティングに対して、今までは「商品→ターゲット→提案方法」のみで考えていましたが、学習を通じてより深く理解することができました。特に印象に残ったのは、「自社の強み」と「競合を知る」ことの重要性です。これにより、より優位に活動できると改めて認識しました。同じ商品でも、見せ方を変えることでターゲットが変わるように、自分の視点だけでなく多様な視点から物事を見ることが大切だと感じました。 市場ニーズはどう見える? 市場にどのようなニーズがあるかを捉えることは、ターゲット選定において重要です。顧客ニーズを知るためのインタビューや、業界の情報を常に収集することが習慣化されていると良いでしょう。BtoB市場の特性も考慮しながら、顧客ニーズ、ターゲット、商品が決まれば、それをどのように顧客に届けるかを考える「4P」の考え方も重要であると学びました。購入したグロービスのマーケティングの本を通じて、さらに知識を整理していきたいと思います。 価値は何で決まる? 私たちの会社はオフィスのデジタル化を提案しており、マスマーケティングではなく、OneToOneマーケティングに近い活動に注力しています。同じ商品やサービスでも、顧客にとっての価値が重要です。今回の学びを生かし、顧客特有のニーズを掘り下げるためには、自信を持って精度の高い仮説を立て、仮説が正しいかどうかを顧客にヒアリングすることが肝要です。仮説の精度を向上させるには、今回のマーケティングの考え方が非常に役立ちます。 仮説検証の方法は? 具体的な取り組みとしては、まず市場分析を行い(大手・中小企業のデジタル化の課題)、次に業種別の情報と顧客特有の情報を収集して、どのようにデジタル化を進めたいか仮説を立てます。その後、顧客にインタビューを実施します。そして成功事例を基に、他の展開が可能かどうかを4Pの視点で考えてみたいと思います. 計画の進め方は? まず自社販売地域の市場を把握し、中小企業のデジタル化ニーズを整理することから始めます(12月5日まで)。続いて、商品・サービスの選定を行います(12月10日)。次に、インタビュー環境を整え、自社ショールームでの体験を促進します(12月15日)。最後に、それらを整理し、4Pの視点で2025年の販売計画を策定します(12月25日まで)。

データ・アナリティクス入門

問いで切り拓く学びの現場

なぜ仮説が重要? 仮説思考について学んだ内容は、まず知識の幅を広げるために「なぜ」を5回繰り返す問いかけや、別の観点からの検証、時系列に沿った動的な理解、将来を予測する思考実験、類似や反対する事象との比較といった手法が有効であるという点です。 どんな仮説を組み立てる? また、ラフな仮説を構築する際には、常識にとらわれず新しい情報を組み合わせ、アイデアの発想を止めずに続けることが重要だと感じました。 検証はどう進む? 検証ステップでは、必要な検証の程度を見極め、枠組みを設定して情報を集め、分析するプロセスが重要です。仮説を肉付けし、再構築することで、より具体的に検証を繰り返していく方法が役立つと学びました。 リーダーは何を実践? リーダーの役割については、情熱をもって率先して行動することが求められ、積極的に発言したり、質問を通じてメンバーを育成したりすることが大切です。チーム内で役割を分担し、各自が切磋琢磨しながら仮説検証に取り組む環境の重要性も強調されました。 マーケティングはどう考える? マーケティングに関しては、セリングが製品ありきで成果を追求するのに対し、市場や顧客ニーズに焦点を当てるマーケティングの考え方が印象深かったです。まず外部環境と内部環境を分析して市場の機会を探り、性質やニーズによるセグメンテーションを行い、ターゲティングを明確にした上で、顧客の頭の中に価値ある製品イメージを構築するポジショニングが鍵となると理解しました。 原因は何だろう? 原因を探る際は、プロセスに分解し、複数の選択肢を洗い出して根拠を持って絞り込む方法が有効です。また、A/Bテストのように複数の案を試しながら効果を比較検証するシンプルな方法も、低コストで実施しやすいと感じました。 どんな学びを得た? 全体を通して、売り上げ減少の原因や新規プロジェクトの構想に対して実務で活用できる仮説思考の手法に触れることができました。特に、問いを繰り返すことで思考を深める方法や、リーダーとしての役割がいかに重要であるかを再確認できた点が印象に残りました。マーケティングの基本概念に基づいて、顧客満足度を重視した商品作りやサービスの開発プロセスについて、実際の経験をお持ちの方の意見もぜひお聞きしたいと思います。

データ・アナリティクス入門

データ分析で解決策を見つける旅

問題解決とデータ分析の関連性とは? 今週の学習を通じて、問題解決のプロセスとデータ分析の関連性について学ぶことができました。特に印象に残ったポイントは、問題解決のステップを「What(現状把握)」、「Where(問題特定)」、「Why(原因究明)」、「How(対策検討)」という形で整理するアプローチです。このステップを行き来しながら問題を深掘りしていく方法は、データ分析で何から取り組んで良いかわからない時に役立つ道筋を示してくれるため、非常に効果的だと感じました。 STARフレームワークの有効性は? 現状把握においては、問題を「あるべき姿」と「現状」のギャップと捉えることが重要です。このギャップを、STAR(Situation:状況、Target:あるべき姿、Action:行動、Result:結果)フレームワークを活用することで、より具体的に問題解決のプロセスをイメージしやすくなります。また、問題を因数分解することで、要素を細分化し問題のある箇所を特定でき、優先的に対応すべきところが明確になります。逆に、不要な範囲を明確にすることで、効率的に問題解決に繋がることも新たな発見でした。 ロジックツリーとMECEの効果は? 問題の因数分解にはロジックツリーが効果的で、層別分解や変数分解(掛け算)の2種類を問題に応じて使い分けることで、より効果的に分析が行えます。MECEの概念も重要で、「抜け漏れ、ダブりなく」問題を捉えることが重要です。 データ分析の具体的な活用例は? 今後、学んだ内容は患者の受診動向調査に活用できると考えています。どのような患者が、どの診療科をどのくらいの頻度で受診しているのかを分析することで、患者のニーズや医療機関の利用状況を把握できます。ただし、実際に活用するためには、現在のデータが分析に必要な要素を網羅しているかを確認する必要があります。 分析の目的は何か? データ分析の目的は、大きく分けて二つです。まず一つ目は患者サービスの向上で、ニーズに合った医療サービスを提供するために分析結果を役立てます。二つ目は病院経営の改善や効率化で、患者の利用状況を分析することで、リソースの最適化が図れます。さらに、定量分析だけでなく定性分析を利用することで、サービス提供時の運用上の問題を解決する可能性もあります。

クリティカルシンキング入門

数字を視覚化して成果を上げる方法

数字を分解し要素を見極めるには? 数字を分解し要素に分けることで、どこに差分があるのかを明確にすることが重要です。数字そのものではなく、割合や順番でとらえることで、差異が見えやすくなります。そのためには、割合や順番をグラフなどで視覚化すると効果的です。 多様な観点からの切り分け方は? 分解の切り口には様々な方法があります。多様な観点から切り分けることで、特徴や差分を特定していきます。特徴がある要素を見つけた場合、他に差異がないかを引き続き分解して検証します。本当にそう言い切れるかという視点で深掘りすることが必要です。 もし分解して特徴が見つからなくても、それ自体が間違いではなく、差分がないことがわかるという成果となります。切り分け方に固執せず、実際に手を動かしてみることが大切です。MECEに基づく切り分けには、層別、変数、プロセスがあります。MECEを適用する際には、最初に「全体」とは何かを定義し、全体の範囲を決めることが肝心です。 分解が市場調査にどう役立つ? これらの方法は、市場調査や競合他社の分析に役立ちます。例えば、同じ商品やサービスでも各社がどのように成り立たせているかを要素に分解し、差異性を探ることで、仮説を立てることにもつながります。また、業務システムの改善案件でも、どのプロセスにどれくらいの時間や人手がかかっているのかを分解することで、改善策を見つける手助けとなります。 プレゼン資料をより説得力のあるものにするには? データを加工する際には、クライアントへの資料をより伝わりやすく、説得力のあるものにすることが求められます。数字そのものではなく、割合や順位といった形で意味を視覚化し、要素ごとに差異性や特徴を明らかにすることで、しっかりと説得力のあるプレゼンが可能となります。 全体の定義はなぜ重要? まずは全体の定義から始め、チームで共有することが重要です。全体の定義ができたら、次は分解の切り口について皆でアイデアを出し合います。それを元に切り口ごとで差異や特徴を分析し、必要があれば更に深掘りします。特徴や差異が出ない場合でも、その事実を記録として残すことが重要です。数字はそのまま使わず、全体の中の位置づけやインパクトのある要素を際立たせるなど、ビジュアル化して関係者の共通認識とすることです。

戦略思考入門

次期事業計画策定に向けた差別化戦略の重要性

省エネでゴールに到達するには? 目指すべきゴールを明確にし、可能な限り省エネでそのゴールに到達する方法を見極める方法について学びました。戦略的に行動するためには、現経営資源の独自性(強み、差別化ポイント)を正確に把握し活かすことが肝要です。そして、その差別化ポイントを見極める観点として下記の3点があります。 1. ターゲット顧客に価値を訴求できるもの 2. 経営数値面を含め実現可能なもの 3. 長期にわたり自社の競争優位性を持続可能なもの 本当に差別化できている? 実際に、どのポイントも「できている」「差別化施策だ」と確固たる自信を持って言える状況ではないことに気づきました。例えば、自社が提供するサービスの価値が本当にターゲット顧客が求めているものであるのか(ニーズ/シーズの把握や過剰サービスの可能性も含め)、実際に差別化できているのか、そしてその競争優位性をどれだけ維持できるのかといった問いです。 次期事業計画の策定に向けて 次期中期事業計画の策定時には、「目指すべきゴールを明確にする」「やらなくてよいことをしない」「独自性(強み)を持ち自覚する」そして戦略の構造化を図ることが必要です。学んだ内容を基に、VRIO分析のフレームワークを用いながら周囲の協力を得つつ、関係者と一緒に「高い視座と広い視野」「一貫性と整合性」を意識しながら、差別化施策を立案していきたいと思います。 具体的な差別化施策をどう立案する? 具体的には、以下の5点を意識して差別化施策を立案します。 1. ターゲット顧客は誰か?(ターゲット顧客にしないのは誰か?) 2. 自社はどのような価値をターゲット顧客に提供しているか?(価値を明確に表現できているか?) 3. それは本当にターゲット顧客が求めていることか?(ニーズ/シーズは何か?満たしているか?期待を超えているか?過剰サービスになっていないか?) 4. 本当に差別化できているか?(そう思い込んでいるだけではないか?) 5. 差別化できているとして、その競争優位性はいつまで持続できそうか? 競合とどう比較し学ぶか? また、ターゲット顧客の生の声を確認し、他社の事例から学び比較検討することにも挑戦してみたいと思います。

データ・アナリティクス入門

目的設定から始まる分析の旅

分析前に何を考える? 分析を始める前に、目的や仮説を明確に設定することが基本です。その上で初めて実際の分析に着手できます。データの加工については、AIの活用が効果的ですが、なぜそれを行うのか、また結果がどうであるのかという点については、人の意見が重要だと感じています。これまでの業務では、見やすさやわかりやすさに時間をかけすぎ、本質的な問いに対する回答が十分でなかったと実感しています。 定量データの違いは? 定量データには様々な種類があり、平均値を算出することが有意義な場合とそうでない場合とがあります。直感的には理解できるものの、理由を問われると具体的な説明が難しいこともあります。質的なデータか量的なデータかという違いよりも、それぞれの特徴をしっかりと認識しておくことが大切です。 条件比較、何を見る? データの比較を行う際は、本当に同じ条件で比較できているかどうかを確認する癖を身につける必要があります。なぜ複数のデータを比較するのか、比較から何が読み取れるのかを常に考えることが求められます。例えば、既存店舗における業績、顧客属性、サービス満足度のデータを用いる場合、その店舗の改善ポイントや、他店舗で活用できる内容を明らかにすることが重要です。また、将来予測に際しては、既存店舗のデータ分析が正しく目的を果たし、正確な判断につながることが、1年先の店舗運営における仮説や予測の精度向上、そしてリスクヘッジに直結すると考えています。 会議で何を共有? 会議や立ち話などの中で分析に関する話題が上がった際も、まずは紙一枚に目的、期間、どのようなデータが必要か、既存のデータなのか、どの部分から入手可能かをまとめることが大切です。その上で、依頼者と意見をすり合わせながら進めることが効果的です。 定性データは役立つ? また、定性データの活用についても重要な視点です。仮説設定の根拠や課題確認のため、まずは定性データに目を通す機会を十分に設けることが求められます。 AI活用の注意点は? 現時点では、AIの活用は基本的に注意が必要ですが、関係のない自作データなどを用い、どのようなデータの見せ方が効果的かを試行するなど、活用の視点から取り組んでみると良いと感じています。

マーケティング入門

受講生の声に未来のヒント

自社魅力をどう分析? 既存のリソースを活用して新しいビジネス展開に取り組む力が求められます。その際、まずは顧客視点から自社の魅力を分析し、ライバル企業を狭い業種ではなく、広い服飾業界全体として捉えることが大切です。 製品方針は決まった? また、時代の変化に対応した製品開発と、要件定義を明確にした上での開発方針の策定が不可欠です。これにより、より実用的な解決策が生まれる環境が整います。 潜在ニーズを発見? さらに、顧客自身が気づいていないニーズを掘り下げる手法として、行動観察や個人インタビューを実施することが有効です。潜在的なニーズを把握することで、本当に必要とされるサービスや製品の開発が可能になります。 製品名はどう選ぶ? 製品名については、親しみやすく覚えやすい上、製品との整合性がありユニークな語感を持つ名前が望ましいと考えます。名称がユーザーに与える印象も、製品の魅力を左右する重要な要素です。 顧客課題は明確? ペインポイント、つまりお金をかけてでも解決したい課題を見つけ出すことも重要です。単に「あればいいな」というニーズではなく、実際に顧客が投資を惜しまない課題に焦点をあて、機械に限らず工場全体の課題として捉え、顧客への訪問インタビューを通じて具体的な問題点を明らかにする必要があります。 数値で説得できる? 実際、課題の中には費用をかけて解決したいものと、そうでないものが混在しています。例えば、工場向けの大型機械の場合、金銭や時間、人手という具体的な数値で示される課題は、比較的解決に向けた投資が行いやすいですが、中小企業の場合、得られる利益を正確に算出するのが難しいこともあります。そのため、例えば古い機械を更新する際に新製品の処理速度が2倍になるという具体例を用い、1時間あたりの利益や4年間での費用回収シミュレーションを示すなど、数値で分かりやすく説明する工夫が求められます。 担当部門を再考? 最後に、製品名の決定については、どの部門が担当するかも再考の余地があります。従来は機械開発担当が決めるケースが多いですが、ユーザーと近い部門が名称選定に関わることで、よりユーザーに響く名前が付けられるのではないかと感じています。

戦略思考入門

未来を切り拓く学びと挑戦

学習の振り返り:得た知識は? これまでの「戦略思考入門」の学習を振り返り、思考整理、アウトプットの方法、ビジネス構造についての知識を得ることができました。 現代のビジネスリーダーに必要なスキルとは? WEEK06のLIVE授業でも、激変する時代の中で今後のビジネスリーダーに求められるスキルとして「コンセプチュアルスキル」と「ビジネスフレームワークの活用」が重要であると話されましたが、これらの点が講座受講の動機となっています。 新人時代の経験と今の実感 新人時代は抽象的な概念で物事を考えることができず、実務をただこなす日々でした。しかし、自身の経験が積み上がってきた今、「コンセプチュアルスキル」の重要性を実感しています。また、抽象度の高い概念を具体化して伝えるためにはビジネスフレームワークが有効であることも学びました。各フレームワークの目的や用途を理解し、結果に結びつけるツールとして活用できるレベルを目指しています。 言語化スキルの成長は? 言語化・文章化するスキルも力不足だと感じていましたが、講座期間中に考えをアウトプットする機会は良い鍛錬となりました。 自社の事業分析へ挑戦するために 今回の講座で学んだフレームワークを用いた自社の事業分析にも挑戦したいと考えています。これまではマーケティングや競合分析にあまり注力されていなかったため、SWOT分析やバリューチェーン分析などを実践し、新しい収益の柱となる新事業提案につなげられたらと思っています。 社内研修の目的は? さらに、社内の人材研修でフレームワークを用いたグループワークを企画中です。若年層や中堅層に向けて、自社のサービスに対する理解を深め、他社や業界の動向にも視野を広げ、互いの意見を交換しながら分析作業の面白さを伝えることが目的です。 ビジネススキル強化のためのアプローチ 社内研修への活用については、既に企画検討中の研修にフレームワークの分析を取り入れ、ビジネススキルの強化を図りたいと考えています。具体的には3年目、6年目の社員に向けて、ビジネスフレームワークを通じてリーダーマインドを養い、自社のサービスを自分たちの手で構築する意識を持ってもらうことを目指しています。

データ・アナリティクス入門

細かい分析が未来を創る

原因をどう捉える? 問題の原因は、全体のプロセスを細分化して考えることで把握しやすくなります。原因を明確にするためには、各工程ごとに何が起こっているかを順を追って分析することが有効です。 解決策は何だろう? 一方、解決策を検討する際は、ひとつの案に固執せず、複数の選択肢を用意して比較することが大切です。判断基準を設定しておくことで、より説得力のある解決策にブラッシュアップすることが可能になります。また、本質的な施策を比較検討する際には、A/Bテストが有効です。比較したい要素を明確にし、他の条件をできるだけ揃えることで、テスト結果を効果的に実施策へ反映させることができます。 数値分析はどう見る? 事前の動画では、WEBマーケティングの分析においてアクセス数(ページビュー、ユニークユーザー、流入数)、サイト内行動(ページの回遊数、平均滞在時間、直帰率、再訪問率)、広告効果(クリック率、CPA)、および効果測定(コンバージョン)といった数値の重要性が紹介されました。現代のマーケティング環境では、顧客の購買体験がSNSの影響で複雑化しているため、マーケティングミックス(4P)の視点も必要不可欠です。 仮説はどう組み立てる? また、仮説の立て方については、まず知識を広げることで情報を耕し、そこからラフな仮説を作成するという大きな2ステップが重要だとされています。さらに、5Aカスタマージャーニーのフレームワークを活用することで、サービスとの出会いからファンづくりまでの流れを効果的に生み出すことが可能になります。 テストの効果は? 商品の活用状況が悪い場合や解約が増加しているときの対策としては、ポップアップでの案内や電話窓口の資料の強化といったパターンに頼りがちです。しかし、日常的にアプローチ(訴求面)のテストを実施しておくことで、急な数値低下に直面した際にも、事前のテスト結果を活かして迅速かつ効果的な対応が可能になります。現在、A/Bテストを実施している場面もありますが、担当者の発案に頼るのみで、年間で数回程度に留まっています。今後は、各施策の企画段階からテストの仕込みを意識することで、より計画的な改善が期待できるでしょう。

デザイン思考入門

問いかけが育む共感の力

顧客の悩みは何? 業務でサービス開発に取り組む中、ターゲットとなる顧客にインタビューを実施し、悩みや課題を洗い出しながら、そこから得られるインサイトや示唆を導き出しています。これまでは感覚的に共通項や心理を見出していたものの、以下の問いを設定して進めることで、思考が一層明確になると感じました。 ・顧客が感じている悩みは何か? ・その背景にある思考や本能は何か? ・この思考に至る組織的な制約条件(評価や文化など)は何か? ・最終的に、根本課題や真因は何か? AIはどう評価? AIコーチングからは、顧客インタビューを通じて課題やインサイトを探るアプローチに対して高い評価が寄せられています。明確な問いかけを用いることで思考が深まった点は大いに評価できる一方、さらに具体的な顧客事例や背景を考察することで、理解がより深まる可能性が示されています。 解決策は何? また、以下のような問いも提示されました。 ・インタビューで見つけた顧客の悩みの根本原因に対して、どのような解決策が考えられるか? ・提示された「課題定義」の5つのポイントはどのように活用されているか? このような追加の問いかけを通して、顧客理解をさらに深めるために、さまざまな視点でのアプローチを試みることが大切であると感じます. 今回、提示された4つの問いで思考を巡らせた結果、提供価値に直結する良い結論(真因)を導き出すことができました。ただし、試行は一度に留まっているため、今後はさらなる改善を図っていきたいと考えています。背景にある思考や本能、さらには組織的な制約条件を探ることが「共感」に繋がるのではないかと感じています。 分析方法は? また、定量分析と定性分析についても再認識する機会となりました。課題定義フェーズでは定性分析を重視し、定量は仮説の立証に活用するという考え方です。「根本課題・真因」を考える際には、背景にある思考や本能、そしてそれに影響を与えた組織的な制約条件(評価や文化など)を深く掘り下げることが、インサイトの導出に繋がると感じます。言うは易く行うは難しいですが、意識的に構造化して思考を働かせ、今後も実践していきたいと考えています。
AIコーチング導線バナー

「分析 × サービス」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right