マーケティング入門

多角的学びで経営に挑戦

提案はどう説得する? マーケティングプランを加えた提案は、納得感を高めると実感しています。さらに、ファイナンスやアカウンティングなどで全体の状況を網羅することで、意思決定者の立場からの提案が可能になると感じました。 データは十分かな? マーケティングは顧客重視のため、定量化が難しい面があります。そのため、データの収集と分析力を向上させる経験を積む機会を大切にしていきたいと思います。 業務提案はどう見る? 新規業務提案にもこの考えを活かし、将来的な起業も視野に入れた上で、短期と長期の仕組み作りを重視します。大手の事例だけでなく、中小企業の成功例や失敗例にも学ぶために、書籍や動画サービスを通じて継続的に情報を取り入れる習慣を続けていきます。 書籍の読み方は? また、購入した書籍は全て読むのではなく、目次やダイジェストを参考にして本質を見極め、必要な部分を深く読み込むように工夫します。グロービス終了後も、時間を有効に活用して学習を継続し、部署内でのアウトプットの機会を通じて知識の定着を目指します。

アカウンティング入門

ターゲットで未来を拓く

ターゲットはどう選ぶ? ターゲットを明確に設定し、その層に合わせたサービスを提供することが成功の鍵だと感じました。ターゲット層を絞らずに展開すると、どこか中途半端なサービスになり、結果としてどの層にも響かない可能性が高いと思います。 ブランド戦略の秘密は? また、老若男女問わず幅広い顧客を持つある有名ブランドの戦略に改めて驚かされました。誰に対しても「価値」を感じてもらえるブランドづくりの秘訣を知りたいと考えています。 具体的活用はどう? この考え方は、以下の3点において具体的に活用できると感じています。 ① 自社の成長戦略を検討する際、まずターゲットを明確に定め、その上で商品やサービスの方向性を確認するために活用したい。 ② 現在力を入れているターゲットがどこであるのかを示し、もし取りこぼしている層がある場合は、その理由を明確に考え直す必要があると考えます。 ③ 商談が立ち止まった企業については、業種やニーズを再調査し、どの部分にズレがあったのかを分析して今後に活かしたいと考えています。

データ・アナリティクス入門

3C×4Pで描く未来予想図

3C分析の魅力は? 仮説を考えるためのフレームワークについて学ぶ中で、まず3Cの分析が印象に残りました。事業を取り巻く環境を整理するために、顧客(市場)、競合、自社という観点から現状を捉えることが重要であると感じました。これにより、市場の拡大可能性や自社サービスの強み、顧客のニーズの充足度が明確になります。 4P戦略の効果は? 次に、4Pのフレームワークも非常に有益でした。製品やサービスの質、適正な価格設定、提供場所、販売促進の各要素が、顧客に対する訴求力を高める鍵となることを再確認しました。これらの要素をバランスよく整えることで、より効果的な経営戦略が実現できると実感しました。 仮説の意味は? さらに、仮説を持つことで、単なる問題解決に留まらず、未来への問題意識や事業への関心を持ち続けることができるという点も大きな収穫です。結論においても、現状の運用体制の変化に対してどのようなアプローチが必要か、将来的な成長の可能性について仮説を立て、それを日々の業務で検証していく姿勢が重要だと考えています。

データ・アナリティクス入門

再発見!学びの原点と未来

理解の進みはどう? これまで毎週の課題をこなす中で、内容の理解が進んでいると感じていました。しかし、最終講義の際に、一部消化しきれていない点や全体の流れの理解が十分でないことに気付きました。そのため、分析のテクニックに入る前に、基本的な考え方や全体の流れを再確認したいと考えています。 戦略と課題はどう? また、新サービスの展開にあたっては、現状を踏まえた上で、今後の利用促進に向けた提案を実現するための分析が可能であると感じています。一方、社内の購買データの分析については、解決すべき課題が残っているとの相談も受けています。このため、購買データの分析に取り組む前に、目的を明確にし仮説を立て、具体的な取り組みを進めていく必要を認識しています。 具体策はどうする? 具体的には、新サービスについては目的を再確認し、必要なデータの見直しを行います。また、購買データの分析に関しては、事前に解決しなければならない課題に対し、目的の明確化とそのための提案を進めることで、効果的な分析に結び付けたいと考えています。

データ・アナリティクス入門

エビデンスが示す戦略の新境地

A/Bテストとは? A/Bテストは、データ分析における「比較」の重要性を実感させる手法です。ランダムにサンプルを抽出することで、一定数の調査データから精度の高い結果が得られる点や、どの工程でボトルネックが発生しているか割合を算出できる点に実践的な可能性を感じました。 戦略の判断基準は? 勤務先のイメージ戦略について、2つの側面のうちどちらを強調すべきかは感覚的には把握しているものの、エビデンスが不足しているため不安な面もあります。A/Bテストを活用すれば、どちらがより効果的か明確に判断できるのではという期待から、早速ターゲティングサービスを提供する業者に同様のサービスがあるか確認する予定です。ただし、単純にAかBのどちらかだけではなく、両方を組み合わせた戦略が効果を高める可能性もあると考え、慎重な実施が必要だと感じています。そこでまずは広告代理店に相談し、業界の広報戦略が十分に実践されていない現状を踏まえた実証実験として、自社と共同で取り組める可能性を探るため、休み明けに連絡するつもりです。

データ・アナリティクス入門

数値分析で掴む学びの一歩

数字の意味は? 数字だけが羅列されているデータは、そのままでは意味を把握しづらいと感じました。データを適切に加工することで、理解が深まると思います。 数値の分析法は? 数値の分析にあたっては、代表値や散らばりに注目する必要があります。代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、それぞれの状況に合わせた選択が求められると感じました。 年齢層の傾向は? また、コミュニティ内の受講生の年齢層を考える場合、単純平均だけでなく、中央値や散らばりも分析することで、どの層にアプローチすべきか、またはまだ十分に届いていない層に合わせたサービス展開を検討できると考えました。 情報収集はどう? 現状、年齢データを明確に把握する手段がないため、まずはアンケートの実施や入会時のデータ取得を通じて、年齢情報の収集が必要です。さらに、退会者数についても、単なる人数の推移のグラフではなく、どの時期に退会率が高いのかといった散らばりも視覚化することで、より具体的な分析が可能になると思います。

戦略思考入門

無駄を省く戦略のはじめかた

戦略思考の基本は? 戦略思考とは、適切なゴール設定を行い、そのゴールに向かう最短最速の道筋を設計することだと捉えました。むやみがむしゃらに取り組むのではなく、無駄を省きながら内部と外部の両面から深く広い視点で物事を捉える必要があると感じています。 分析視点は変わる? また、自社の今後の戦略立案において、今回学んだフレームワークを積極的に活用していきたいと考えています。今までの3C分析では市場、他社、自社に焦点を当てていましたが、今回のコースで市場だけでなく顧客や、直接的なサービス競合以外の他社にも目を向けるべきだという学びを得ました。この気づきをもとに、分析を再度見直し、整理していく予定です。 PDCA活用の方法は? 具体的には、分析結果をまとめた資料を上司に提出し、フィードバックを得た上で修正を加え、再度提出するというPDCAサイクルを徹底して回していきたいと考えています。今回の学びは非常に多く、インプットだけでなく、アウトプットを重ねることで着実に理解を深めていきたいと思います。

アカウンティング入門

貸借対照表が照らす未来経営

資金調達はどうすべき? 業種によって貸借対照表内の項目が全く異なる点に驚かされました。ビジネスを始める際は、コンセプトを明確にするとともに、「どこから資金を調達するか」「調達した資金をどのように活かすか」をしっかり考えることが重要だと改めて実感しました。 財政状況はどう把握? また、実際に自社の貸借対照表を確認し、各項目の割合を分析することで、自社の財政状態を把握できるだけでなく、同業他社や仕入先、取引先の状況も判断できると感じました。一方で、現在の部署やポジションでは、これらの知識を活用するタイミングがまだ訪れていないのが現状です。 成長戦略はどう描く? 今後の方針としては、この単科を最後までやり遂げることはもちろん、別の単科にも取り組む予定です。また、より広い視野で学びを深めるために、学び放題のサービス利用も検討し、他部署への異動も視野に入れています。学びを止めることなく、インプットだけでなくアウトプットにも力を入れられる環境を整えていきたいと考えています。

戦略思考入門

可能性を活かすための戦略的思考

物事を捨てる選択は正しいか? 戦略的に物事を捨てることの重要性を再認識しました。業務において「捨てる」という選択は、可能性を手放すことと同義になる場合もあります。しかし、実践演習で経験したように、ROIなどの定量的指標を用いて優先順位をつけることが重要だと感じました。 顧客の優先順位をどう付ける? 実践演習で学んだ内容を活かして、顧客の優先順位付けを行い、どの顧客を優先的に訪問することで営業利益を最大化できるかを考えたいと思います。これまでは、過去の売上や顧客の規模で大まかに仕分けをしていましたが、今後は他の数値を参考にしながら、ROIを高めるために組織運営を進めていきたいと考えています。 データ分析で得られるものは? 数値分析を進めるにあたり、社内でどのようなデータが利用可能か、またどのように計算できるかを一次情報に基づいて分析したいと思います。さらに、現在行っている業務やサービスを洗い出し、無駄や不要なものが残っていないかをゼロベースで再検討していきたいと考えています。

データ・アナリティクス入門

試行錯誤が未来を拓く

プロセスはどう進む? 問題解決のプロセスでは、目の前の事象に飛びつかず、複数の選択肢を用意してテストを行いながら、仮説検証を繰り返すことが大切だと感じました。その過程で根拠を持って絞り込みを進めることが必要です。 分析は何を示す? また、データを収集して分析するアプローチも重要です。仮説を試しながら同時にデータの収集を進め、より良い解決方法を探ることが求められます。今の時代は動きが早いため、あれこれ考えすぎるよりも、実際に動きながら考え、必要に応じて迅速に修正していく体制が不可欠と感じました。 運営支援はどう変わる? さらに、コミュニティ運営サポートにおいては、データ分析の手法が多岐に渡ります。特に受講生の満足度についての調査を通して、彼らがどのような興味や関心を持っているのかを理解し、退会率を抑えるための施策を検討する必要があります。そのためには、ABテストなどを用いて実際の反応を確かめながら、求められているサービスを提供していくことが欠かせないと感じました。

データ・アナリティクス入門

比較と検証で切り拓く未来

分析の見極めポイントは? Week1を振り返って、「分析は比較なり」という言葉が強く印象に残りました。正確な分析を行うために守るべき要点を改めて認識するとともに、仮説と検証を繰り返すことの重要さを実感しました。 業務での分析とは? 実際の業務シーンでは、以下のような場面でデータ分析の手法を活用しています。病院のデジタル推進におけるデータ分析、サーバ性能やトラブル発生時の問題解決、新サービス導入時のサーバ負荷試験に関する見解、また、LINEや無呼吸ラボ、近隣検索、PCPへのファネル分析、アクセス数やページビューの分析など、さまざまな事例に取り組んでいます。 分析習慣の秘訣は? 日々の業務においては、勘や経験則だけに頼ることなく、データ分析に基づいた意思決定を行う習慣を身につけることが重要だと感じています。問題が発生した際には、What、Where、Why、Howの視点で現状を整理し、的確な対策を講じるために、仮説と検証を繰り返す姿勢を大切にしていきたいです。

データ・アナリティクス入門

ロジックツリーで拓く課題解決

正常と理想は何が違う? 正常なあるべき姿とのギャップを解消するだけでなく、現在の正常な状態からありたい姿へのギャップを埋めること自体もひとつの問題解決だという考え方は非常に印象に残りました。 ロジックツリーはどう使う? また、ロジックツリーという手法について学び、その分解方法に層別分解と変数分解があることを理解できた点も大きな収穫でした。MECEの原則を意識することで、分析において情報の漏れや重複を防ぎ、ビジネスチャンスを逃さないための重要性を再認識しました。 受け手は誰に焦点か? さらに、臨床検査サービスの受け手は患者だけでなく、医師やその他の医療スタッフなど多岐にわたるため、どの受け手に焦点を当てるかを考慮する際にロジックツリーが有効に活用できると感じました。実際、臨床検査のプロセス改善においては、層別分解を用いて「人」に関する問題と「設備」に関する問題に分けて検討するという具体的なアプローチが示唆されており、実務の現場でも役立つと実感しました。

「分析 × サービス」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right