クリティカルシンキング入門

データ分析の一手間で見える世界

データをどう加工すべきか? 与えられたデータをどのように加工すればよいか、その考え方を学ぶことができました。大切なポイントは以下の3つです: 1. 与えられた表をそのまま見るのではなく、まず加工を考える。 2. 絶対値ではなく相対値でもデータを見る。 3. 一手間加えてグラフ化し、視覚的にわかりやすくする。 データ分析の仮説立て方とは? これらを実行する上で重要なのは、仮説を立ててデータを分解することです。特に、MECE(漏れなくダブりなく)な分解を習得することが求められます。 可視化で何を達成できる? 私は、売上や営業スタッフ一人ひとりの実績やシェアを見ることが多く、その際にフィードバックを行う機会があります。ただ結果を振り返るだけでなく、もう一歩踏み込んだフィードバックができるように、データを可視化したいと考えています。可視化する際には、様々な切り口でデータを分解し、仮説を立てて分析します。もし仮説が結果に結びつかなくても、トライ&エラーを繰り返して原因を追求します。 今後の目標は? 今後の目標は以下の通りです: - 毎月の数字の振り返りの際に、特定エリアの商圏分析と購買年齢層を比較し、問題の明確化と特定を行い、さらに原因追求のプロセスを明確化する習慣をつける。 - 営業スタッフへの数字振り返り資料を、次回の会議時にはグラフ等を用いて改訂してみる。 - 月間の実績確認において、各カテゴリーごとにチェックするだけでなく、その都度気になる切り口でMECE分解を行う。

データ・アナリティクス入門

仮説で広がる学びの世界

仮説の意味は? 仮説について、「結論の仮説」と「問題解決の仮説」という2つの種類があることを学びました。普段何気なく使っていた「仮説」という言葉について、自分はどちらの立場で話していたのだろうかと振り返る貴重な機会となりました。また、仮説を考える際には、決め打ちせず複数の可能性を探ることや、さまざまな切り口から網羅的に考えることの重要性を再認識しました。さらに、データ収集においては、必要なデータだけでなく、仮説に対する反論を排除するために比較対象となるデータも意識的に集めるべきであるという点が印象に残りました。 3Cと4Pの使い分けは? 業務では、Customer/Competitor/Companyの3C分析を中心に行っていましたが、細かいサービス検討の場面では、Product/Price/Place/Promotionの4Pも活用していく必要性を感じました。特に新規事業の商品検討にあたっては、4Pの視点からより具体的な検討を進めたいと思います。 問題解決の手順は? また、問題解決のプロセスとして、What、Where、Why、Howの順で考えることの重要性を学びました。これまでどうしてもHowから着手してしまう癖があったため、今後の学習期間内に、残りのプロセスもしっかり取り入れるようにしていきたいと考えています。 検証との連携は? 最後に、仮説と検証はセットで考え、事前の準備や仕込みを徹底し、比較データなどを用いた適切なデータ収集ができるよう努めたいと思います。

データ・アナリティクス入門

データ分析で未来を切り拓くために

データ分析の目的を見直す データ分析の手法として、データの収集、加工、そして発見に焦点が当たりがちですが、何のためにデータ分析を行うのか、その目的が最も重要だと認識しました。そのために必要なデータ項目を選定し、それに基づいてデータを収集する習慣や仕組みを作る必要があります。ただ業務をこなすだけでは、将来に向けた効果的な分析ができず、特に自社の業務データはインターネットで入手できないため、自社内での心がけが欠かせません。 本当の売上分析とは? 私の業務では、データを集計して資料に記載することで終わることが多く、本来の意味での分析に至っていないと感じました。自部門の売上高を集計することが多いのですが、他部門との比較を通じて本当の意味での売上分析を行う必要があり、もっとオープンな視点での比較を考える必要があります。また、落札情報などを蓄積し、市場の相場観も併せて分析することが求められています。 有用なデータの収集方法とは? 現在、社内では中期経営計画の策定時期が来ており、過去の売上や競合他社の状況、他部門との比較を行いながら、データ分析を活用したいと考えています。しかし、データが社内に散在しており、有用なデータが収集しにくいという課題があります。そのため、将来を見据えてどのようなデータが必要かを社内で議論し、データ分析がしっかりと根付く職場環境を作りたいと思います。データを蓄積するためのフォーマットを作成し、社内メンバーがそれを保管・活用できる仕組み作りも進めていきたいです。

アカウンティング入門

数字で学ぶ!本気の経営戦略

利益と費用の違いは? カフェのケーススタディを通して、費用がP/Lのどの科目に該当するかや、売上総利益、営業利益、経常利益、税前当期純利益、当期純利益といった5つの利益の違いが明確になりました。 事業準備はどう進む? 事業を始める際は、まずどのようなコンセプトで展開するか、ターゲットとなる顧客を明確にすることが大切です。その上で、どんな準備を行い、どの程度の費用をかけるかというストーリーをしっかり作り込むことが、利益を生み出し事業継続に寄与するという視点を得ました。 価値本質はどう捉える? また、事業の価値の本質を見失わず、同業他社との比較を通じて自分の事業を客観的に把握することの重要性も感じました。これにより、コスト削減などの具体的な改善策を検討する必要性が理解できました。 施設比較はどんな結果? 今後のアプローチとしては、まず複数の施設がある場合、各施設のP/Lを並べて比較し、施設ごとの特徴を把握する方法を取ります。全体的な課題と各施設ごとの課題を抽出し、それぞれに対応するコスト削減案を策定することで、利益改善を目指していきたいと考えています。 どの課題に注目? 具体的には、先月の月次P/Lを確認し、赤字部門の課題を洗い出して対応策を講じるとともに、前年度同月との比較を行い、黒字部門でも利益が低下している理由を分析して改善策を考えました。これらの検討結果を基に、収支改善に向けた次月の行動計画を作成し、メンバーと共有の上、実際に動いていく所存です。

データ・アナリティクス入門

「データ分析でつかんだ達成感」

問題解決のアプローチは? 問題に対応する際には、まず何を明らかにしたいのかをしっかりと理解することが重要です。結論のイメージを持ちながら取り組むことで、ストーリーが明確になります。 データ分析の重要な視点とは? データを分析する際には、実数と比率の両方を確認しましょう。これは、母数の違いによって見え方が大きく変わるためです。また、効果的なグラフを用いることで、分析結果を直感的に理解しやすくすることができます。事象に応じて最適なグラフの表現方法を選びましょう。 考えを整理するコツは? 課題に取り掛かる際には、問題点を整理しましょう。考えたことや思い浮かんだことをメモし、それをグループ化して整理します。必要に応じて一旦立ち止まり、考えを再度整理することも大切です。優先順位を決め、効率的に進めていきましょう。 Copilotを活用する方法とは? また、Copilotと相談しながら思考を整理するのも有効です。特に難しい問題に直面した際には、飛躍した考えやアイデアを得る手助けになります。 クリティカルシンキングをどう磨く? 比較資料についても、実践を重ねながらベストな可視化方法を見つけていくことが求められます。クリティカルシンキングを意識し、しっかりと身につけることが成功への鍵となります。 AIを使って新しい視点を得るには? AIを活用することも一つの手段です。AIで壁打ちをすることで新しい視点を得たり、考えの整理が進んだりするでしょう。

データ・アナリティクス入門

問題解決の視点で成長する方法

何が最優先? 問題解決の考え方では、まず最も重要な問題を特定することが大切です。「何が問題か?」という視点から始め、数値を比較して問題の所在にあたりをつけます。また、理想の計画と現状の未達成状況を把握し、そのギャップを埋める方法を検討します。数値の比較では、見る必要のない範囲を見極めて効率的に分析を進めることも重要です。 現状はどう捉える? 現状把握の際には、問題をさらに深掘りするための切り口を考え、その仮説や優先順位をつけていきます。この過程では定性的な情報も取り入れることが重要です。特に、数値に頼りがちな初期の分析では、仮説の形成において定性的な情報を活用することが印象的でした。 分解して見える? ロジックツリーの層別や変数の分解を用いて課題に取り組むと、目標達成のための具体的な施策が見えてきます。たとえば、採用施設数や売上の向上、コストカットといった課題に対処する際は、変数分解の考え方が役立ちます。また、メーカー推奨品の効果を確認する際には、計画と実績を数値で評価し、感覚的な良し悪しに頼らず客観的に判断することが求められます。 分析の工夫は? 分析を進める際には、「見なくてもよい範囲・数字・切り口」を適切に除外することで、効果的な分析が可能になります。データの切り口についても、何が効果的か考え、必要であれば追加のデータ取得を検討します。また、チームメンバーとアイデアを共有し、他に異なる切り口の可能性がないかを確認することも重要なプロセスです。

データ・アナリティクス入門

振り返りで切り拓く未来

集客前提を疑ってみる? スクールの課題に対する対応優先順位を誤ってしまいましたが、そこには「また間違った集客を繰り返しそう」という隠れた前提がありました。まずは、この前提を改めることが必要であり、その上で真に解決すべき課題を特定する必要性を感じました。また、生徒データの切り口に関するブレストの中で、「ああそうだ、その観点も必要だ!」との意見があったことから、広い視野を持って落ち着いて検討する重要性を再認識しました。 数字の分析意図は? 分析したい項目がそもそも十分に取得できていない場合もあるため、あらかじめあきらめる部分もある一方で、見るべき数字の優先順位はしっかり決めて取り組む意向です。具体的には、イベントアンケート結果や申込者のデータについて、単に分析するのではなく「何が知りたいのか?その目的は何か?」と自分に問いながら進めるようにしています。 アンケート分析の意義は? 各イベント終了後には、アンケート結果と申込者属性の分析を行い、その内容を報告する必要があります。その際、以下の点を意識して業務にあたっています。まず①どの数値項目を優先的に見るのか、次に②その数値が他のイベントと比較して問題ないか、さらに③比較する際には条件を揃えているか、そして④関係者に報告する際には自分の仮説をセットで伝え、議論を促すかという点です。 特に②以降の実施が十分ではないと感じているため、限られた時間の中で箇条書きなどで条件を明確にし、意識しながら取り組むことを心がけています。

データ・アナリティクス入門

仮説検証で未来を切り拓く

仮説の立案方法は? 今回の講義では、「問題解決の4つのステップ」のうち、問題箇所を特定した後に原因を究明するため、原因の仮説を立てて検証するデータを集める考え方を学びました。原因の仮説立案には、3Cや4Pなどのフレームワークが有効で、視野を広げる軸となると実感しました。 なぜ複数仮説? また、実践力を養うためには、決めつけずに複数の仮説を立て、ヒト・モノ・カネといった要素に網羅性を持たせることが大切です。数字をただ分析するのではなく、何と何を比較して検証すべきかを深く掘り下げる視点が必要だと感じました。 仮説の分類と時間は? ビジネスにおける仮説思考は、「ある論点に対する仮の答え」として、結論の仮説と問題解決の仮説に分類され、時間軸(過去・現在・未来)に沿って内容が変わることが分かりました。正しく仮説検証を実施することで、説得力や仕事のスピード、精度が向上することも理解できました。 仮説習慣の活用法は? 普段から仮説提案型営業を心がけている私にとって、今回の講義は仮説検証の重要性を再認識する良い機会となりました。今後は、3Cや4Pのフレームワークを具体的に活用し、仮説を考える習慣を更に身につけていきたいと思います。 実務での仮説活用は? 日々の業務では、課題解決と検証を繰り返しています。どんな難しい案件に直面しても、自分なりの仮説立案法や問題解決のアプローチについて、フリートークで意見交換ができれば、より一層の学びと成長につながると感じています。

データ・アナリティクス入門

心に響く受講生のリアル声

分析の流れは? 分析とは、情報を分類し整理して、比較対象や基準を設ける作業です。データには種類があり、それぞれに適した表現方法を選ぶことで、どのように加工し見せるかが重要となります。また、分析のプロセスは、まず目的を明確にし、次に目的に沿ったデータや項目を選び、その上で実際にデータ分析を行い、最後に結論やまとめを導く、という流れが求められます。特に目的の明確化、データ・項目の選定、そして結論づけが重要です。 原価推移は分かる? 現在、立ち上げ中の製品原価推移を毎月報告し、現状を集計して前回との比較を行い変化点を確認しています。この報告は現状把握を目的としているものの、集計データから見える原価と、量産化後に実際に把握される実原価との間には差異が存在します。 差異の原因は? そのため、この差異を低減するために、必要な情報が何かを検討し、データ収集と分析を実施することが求められます。どこに差異が発生しているのかを把握し、解決のための打ち手を提案することが目的です。 どのデータを選ぶ? 比較に用いるデータとしてどの項目を選定するか考えると、多くの情報が存在するため、どこから手をつければよいのか迷うこともあります。まずは、既に把握している情報から仮説を立て、検証を進めるのが良いでしょう。その際、データをどのように加工し分析につなげるかに注意する必要があります。特に実原価を正確に把握するためには、人、物、時間といった要素が流動的である点に注意が必要です。

データ・アナリティクス入門

目的明確!小さな成功体験から学ぶ

分析はどう進める? 分析を始める際は、まず何をどのように比較するかを明確にし、普遍的かつ偏りのない俯瞰的な視点で対象を捉えることが大切です。その上で、最初に目的をしっかり設定し、仮説の構築を行うことが必要です。実際、どの手法を用いるかよりも、まず「何」を重視し、体系的に物事を整理していくことが大切だと実感しました。 目的は明確か? また、何をしたいのか、なぜそれをしたいのかという目的を明確にすることに十分な時間をかけるべきです。出発点のズレはプロセスが進むにつれて大きくなり、取り返しがつかなくなる可能性があるためです。これまで、単にデータを作成するだけで有用な仮説がなかったために、データが十分に活かせず埋もれていた傾向があると感じています。 成功体験は大事? 既に取り組んできた方法もありますが、完全には浸透していない部分もあると実感しています。そこで、今後は継続的に小さな成功体験を積み重ねることが重要だと考えています。 具体手順は? 具体的には、以下の手順を意識しています。 ・まず、複数の視点からデータを検証し、それぞれの状態を正確に把握する。 ・何と比較するか、またプロジェクトを進めるためにどのデータを比較対象とするかを明確に決定し、一度決めた基準は後で変更しない。 ・進捗の状況を見ながら、行動の軌道修正が必要か否かを判断できる体制を整える。 ・結果が出た際には、なぜそのような結果になったのか振り返り、データ上で整理しておく。

アカウンティング入門

数字で切り拓く経営の未来

利益の種類は何? 利益には大きく分けて、営業利益、経常利益、当期純利益の3種類があり、売上総利益も押さえておくとよいという点は基本中の基本です。 P/Lの全体像は? P/L(損益計算書)を読むときは、大きな数字―売上高、営業利益、経常利益、当期純利益―を軸にして、全体の概況を掴むことがポイントです。また、分析は比較や対比を行うことで、傾向の変化や相違点を見つけ出す方法が有効です。 異なるP/Lの違いは? さらに、異なるP/Lを比較することで、その構造の違いを確認できます。例えば、業種によっては収益向上の度合いが大きく異なり、業界ごとの特徴が浮き彫りになることもあります。 事業計画の評価は? 事業計画においては、企業コンセプトに沿った施策が展開されているか、投入費用が適正かを総合的に判断する必要があります。効果を上げるためには、アウトプットを増やすか費用を削減するどちらかを選ぶかといった視点も大切です。同業他社のP/Lと比較・対比することで、傾向の相違点を見つけ、新たなアイデアや施策を模索する取り組みも求められます。 皆様の意見は? なお、今回の設問2「原価比率の高い理由」では、個人的な思い込みから適正とは言えない回答をしてしまいました。そこで、皆様はどのように回答されたのか、また、直接利益に結びつかない仕事の性質上、この講習内容をどのように自身の業務に定着させていこうと考えているのか、ぜひ意見交換できればと思います。

データ・アナリティクス入門

データ比較で気づいた発見と反省

適切な比較対象とは? 「分析の本質は比較」という言葉が最も印象的でした。「Apple to Apple」と「Apple to Orange」という表現が動画で紹介され、過去に何となく使っていたことを思い出しました。しかし、改めて説明を聞くと、適切な比較対象を示す意義があることに気付かされました。 分析のプロセスを見直す 分析を始める前にまず目的を確認し、仮説を立て、そのためにどのデータを比較すべきかを考えるプロセスが重要であることを感じました。今まではこのプロセスを特に意識していなかったことに反省しました。ライブ授業のグループワークでは、人それぞれの多様な見方を感じ取ることができましたが、積極的に発言するメンバーがいる中で、自分がなかなか発言できなかったことを振り返りました。動画やライブ授業のまとめにあった「言語化・教訓化・自分化」が自分にはまだ足りていないと実感し、これからの取り組みに生かしていこうと思いました。 業務へのデータ分析活用 現在の業務でデータ分析を主に行うことは少ないですが、普段接するデータについても何を比較すべきかを考え、その視点を持って関わっていこうと思います。データを見る際には、まず目的を明確にし、何をアウトプットしたいのか、何のための分析なのかをしっかり考えて業務に取り組むことが大切です。データ比較を通じて新たな気づきを得るために、データに向かう際の意識を高めていきます。日々の業務でこれを実践していこうと考えています。

「分析 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right