データ・アナリティクス入門

数字の向こうに見えた本当の学び

数字だけで判断してる? 数字をそのまま見ると、判断を誤る危うさや怖さがあります。実態を正確に把握するためには、数字の中身に潜む意味を紐解き、大枠と詳細を行き来しながら分析する必要があります。 集約方法は適切? そのためには、数値を適切に集約して可視化することが求められます。ただし、集約の方法自体も状況に応じた判断が必要です。数字の意味を正しく読み取り、どの手法で集約すべきかを判断しなければ、誤った方向へ導いてしまうリスクがあります。 どの手法が最適? 何度も試行錯誤を重ね、どの手法が実態を正しく反映しているかを見極めることが重要です。自分が行った集約内容を比較することで、分析の精度を高めることができます。 数字の羅列で判断? 数字が羅列されるだけでは、実績、利益、投資経費といった各状態がどのようなリターンに結びつくのかが明確に見えにくくなります。これらの判断材料を集約し、分散して検討することで、より妥当な判断が可能になります。 見るべきはどこ? また、見るべきポイントを示すことは分析を行う上での基本的なマナーであり、迅速な判断を下す要因にもなります。難しい計算式に頼るのではなく、基本的にはツールやExcel、BI、AIなどを活用して分析を進める場面も多いですが、これらの使い方を根本から学び、センスを磨くことも重要です。 視覚化の工夫は? 単に数字をグラフにするのではなく、伝えたいポイントがしっかりと相手に伝わるビジュアルを作成するために、思考と工夫を重ねる必要があります。

データ・アナリティクス入門

課題解決スキルが劇的に向上する方法とは?

実践による学びの深まり Week1から継続して学び続けた内容を、ライブ授業の演習を通じて「一気通貫」で実施することができ、実践に活用するイメージが具体化しました。特に、仮説は一度立てたら終わりではなく、段階ごとに検証を通じてブラッシュアップしていくこと、また分析は比較であることを強く感じました。さらに、課題解決のプロセスは「What→Where→Why→How」という順序で考えることが重要であると学びました。このプロセスを進める中で、「データのビジュアル化」や「多様な切り口を考えること」の大切さも再認識しました。 課題解決の新たな視点とは? 自分の仕事は基本的に社内の「課題」を解決することが主な業務であり、この講座で学んだ内容はあらゆる場面で活用できると確信しました。これからは、課題解決のプロセス「What→Where→Why→How」を常に意識したいと思います。問題を解決する際には、直ちにデータ分析に取り掛かるのではなく、まず問題の定義から始め、問題点を特定して原因を分析するというプロセスを「事前」に頭の中で描くことが重要です。それにより、無駄な作業やヌケモレを防ぎ、「How」を忘れずに取り組むことが可能です。 事前準備の重要性について 具体的には、すぐに「データ分析」に取り掛からないことを意識的に行い、事前にそれぞれの課題解決プロセスで必要な「タスク」をイメージし、タイムラインを引いて計画を立てることが大切です。最初はしっかりと言語化し、プランをドキュメントに起こしておくことを心がけます。

データ・アナリティクス入門

仮説検証で切り拓く未来

プロセスはどう検証する? 問題の原因を明確にするためには、まずプロセスを分解して検証することが重要です。解決策として、複数の選択肢を洗い出し、しっかりとした根拠に基づいて絞り込む方法が有効だと感じます。 効果はどう比較? A/Bテストでは、施策の効果を比較しながら仮説検証を繰り返します。あらかじめ検証項目を明確に設定し、1要素ずつ検証することが大切です。 データで判断する? データに基づいた意思決定を行うことで、業務の効率化や成果の向上を目指します。日常の仕事の中で仮説を立て、適切なアプローチ方法を模索してきました。過去の経験では、業務過多のため情報共有が主にメールに頼っていた状況もあり、その際はA/Bツールを利用して、理解度や反応の良さといった観点から効果のある方法を試してみました。例えば、メールでの通知と社内共有ドライブへの保管を比較する取り組みが挙げられます。 学びをどう定着? Week5までに多くの分析手法を学びましたが、学んだ内容を自分のものにするためには、メモを振り返りながらフレームワークの活用やデータ加工、さらに比較する際にどのグラフを使用するのが最適かを検討することが必要だと感じています。まずは実践を通じて知識を定着させ、現代ではAIの助けを借りながら調査の時間や手間を省いていきたいと考えています。 新分野はどう理解? また、動画学習を通じてWebマーケティングの指標など新しいエリアにも触れる機会があり、専門外の分野に対する理解がさらに深まったと実感しています。

戦略思考入門

顧客視点での差別化戦略の鍵

顧客視点が重要なのはなぜ? 差別化戦略を考える際には、競合にばかり気を取られず、まず顧客の視点に立つことが重要だと感じます。差別化戦略において「選択と集中」は大切ですが、同時に複数の施策を実行できれば競争力はさらに高まります。環境は常に変化するため、自社の強みも定期的に見直すことが必要です。しかし、特定の強みで大規模な成功を収めた場合、方向転換は難しく、そうした課題に対応できていない企業も多いのではないでしょうか。 海外での専門性はどう活かす? ITベンダーとして国内外で仕事をしていると、国内では顧客の要望に柔軟に対応しますが、海外では専門性がないと認められません。実際には、複数のIT技術を扱うといっても、全てを深く学ぶことは難しく、場合によっては表面的な対応に終わってしまうことがあります。また、若手社員が勉強しても、次の仕事では別のことを任されると思うと、学ぶ意欲を維持しにくく、成長を実感できないことがあるようです。企業も専門性を重視し、業務を外注することで、社内で一貫した比較や統合を行うように変わってほしいですね。私は、そのような姿勢を企業に対し提案していきたいと考えています。 自身の専門性をどう高める? 幅広く知識を習得しつつ、自分が得意とするAIやデータ分析、ソフトウェア工学の分野では積極的に情報発信を行い、自身の専門性をアピールしています。例えば、2月9日にはAIエージェントについて、2月10日にはGraphRAGについての発表を予定しており、これを確実に実施したいと考えています。

データ・アナリティクス入門

データで見つける!チーム改善の極意

目的は何を求める? データ分析において、まず目的を明確にすることが重要です。比較対象や基準を設けて仮説を立て、分析を進めることで、確実な意思決定につなげることができます。また個人的に、円グラフと棒グラフ(縦横)の使い分けが参考になりました。これまでは棒グラフの方向についてあまり意識していませんでしたが、今後は意識的に使い分けていきたいと考えています。 業務はどう進める? 現在、私はR&D部門で営業支援機能の一環として、顧客向けPoC作成や自社商材のクロスセル・アップセル立案を行っています。この中で、KPIの進捗率が良いチームと悪いチームが存在します。進捗率の悪いチームに対し、原因を分析してどのような支援が必要かを検討するための材料とする予定です。講義を受け、現在の業務の大半が定性的な要素に支配されていることに気づきましたが、これらも定量的なデータとして取得可能であることに今後注力していきたいと考えています。 指標はどこを確認? 具体的には、目的を「進捗率の良いチームと悪いチームの差分を捉え、悪いチームのパフォーマンス改善につなげる」と設定しました。KPI管理している指標の前段階にある要素をロジックツリーで再度分解し、KPI設定に漏れがないか確認します。この過程で、数値データを得るための手法を考え、進捗率の良いチームと悪いチームへ調査を行って数値を取得します。同じ条件のデータ同士で比較して差分を捉え、数値的な差異からどのポイントで躓いているかを特定し、支援方法の検討につなげます。

データ・アナリティクス入門

課題解決のためのアプローチ学びました

どの要素に焦点を当てるべきか? 問題解決のためには、What、Where、Why、Howの各要素に分けて進めるアプローチが重要だと学びました。単に数字を眺めるだけでは見えにくい情報も、プロセスごとに分けて考え、それを定量化 (例えば、ファネル分析やコンバージョン率) することで新たな課題が明らかになります。 仮説立案のコツとは? また、問題の原因を探る際には仮説を立てることが鍵です。その際の思考範囲を広げるために、対となる概念である「対概念」が有効であることも学びました。分析を進める上では、条件を揃えることが重要で、いわゆるApple to AppleとするためにA/Bテストを行い、比較対象の違いを絞り込むことが必要です。原因を探る際には、多くの項目に手を広げず、仮説を絞り込んで十分に研ぎ澄ますことが求められます。 システム導入の目的をどう明確にする? これからシステムを導入するにあたり、まずシステムが何のために必要かを明確にし、その問いを検討段階から関係各所と共有しながら進めることが大切です。そして、現状における問題の特定を行い、What、Where、Why、Howの各要素に分けて進めていきます。 比較分析のためには? システムの導入においては、何を比較するのかを明確にし、例えば導入した場合と導入しなかった場合の比較や、複数社での比較を行います。また、現状とあるべき姿のギャップを定量的・定性的に描き出し、比較することが重要です。場合によっては仮説を立てて進めることも効果的です。

データ・アナリティクス入門

ロジックツリーで紡ぐ成長の軌跡

原因特定で悩む? 問題解決のためには、「WHAT」「WHERE」「WHY」「HOW」の4つのステップで整理すると良いと感じました。私は特に「WHERE」の段階、つまり「原因の特定」に偏りがあったように感じますが、今後は「状況把握」や「解決策」に関しても仮説を立て、ロジックツリーを使って可視化するようにしたいと思います。一度有効だと考えた仮説に固執せず、全体を整理し直す柔軟な姿勢を大切にしていきたいです。 人事課題に挑む? 人事課題では、正解がない問題が多く、一般論や他社の傾向と自社の実情が必ずしも一致しない場合があります。そんな中で自分が立てた仮説やその結論を明確にするため、ロジックツリーを作成しながら取り組んでいくことが重要だと感じました。また、これまで属性ごとに人事データを層別分解してきたものの、変数ごとの解釈が不足していたため、状況に応じてさまざまな角度から仮説の検証を行えるように努めたいと思います。 本当の問題は? まずは、目の前のデータに頼るのではなく、何が本当の問題なのかを明確にするための仮説を立て、その仮説をロジックツリーのような形で整理していきます。現状のデータだけでなく、どんなデータがあればより適切な比較ができるかを考え、必要であればデータを収集できる体制を整えることにも注力していきたいです。 検証の進め方は? 最後に、実際にデータを使って仮説を検証する際には、ログを残すことや、時間や状況の違いを比較することを意識しながら、着実に分析を進めていく所存です。

戦略思考入門

見える化で挑むコスト改革

学びで何が変わった? 今週は、規模の経済性、習熟効果、範囲の経済性について学びました。これらはコスト削減に役立つという認識は以前からありましたが、具体的に言葉にして整理されることで、より実感できるようになりました。また、効果が見られない場合もあるという説明を受け、自分自身がその点に気づいていなかったことを再認識しました。 ネット効果をどう見る? また、過去にゲーム業界、現在はIT業界にいるため、ネットワーク経済性に関しては日常的に意識する場面が多いですが、今回の学びにより、普段はあまり意識していなかった部分も含めて、再確認することができました。 固定費削減の秘訣は? 私の所属する会社はデータ分析をビジネスの柱としており、これまで競合が比較的少なく、専門職であったため高コストでも許容されていました。しかし、最近ではLLMやAIエージェントの登場で、専門職に限定されない業務も増えているため、差別化戦略を検討する一方で、コスト削減が重要な課題となっています。いかに固定費を下げ、売上や利益を向上させるかが喫緊のテーマとなっており、今回の学びは具体的な施策を検討する際の重要な軸として活用していこうと考えています。 可視化で議論進む? 今後は、各施策にフレームワークを適用して抜け漏れがないか、また見落としているメリットやデメリットがないかを整理し、可視化していく予定です。上司とのディスカッションは口頭で進むことが多いため、こうした可視化を通じて議論をより明確に進めていきたいと思います。

アカウンティング入門

お金の流れで読み解く成功のカギ

B/Sの役割は? 貸借対照表(B/S)は、企業のお金の使い道と調達方法を双方から確認できる重要な資料で、企業の骨組みがしっかりしているかという意味で、健全な状態を示しています。 P/Lの秘密は? 一方、損益計算書(P/L)は会社の儲けを表しますが、その儲けを生み出すためにどのように資金が使われ、調達されたかをB/Sで把握するのです。 B/S読み解きは? また、B/Sを読み解く際には、企業のビジネスモデルや提供する価値を意識することが大切です。つまり、必要な経営資源が何であるか、そしてどのように資金を調達するかを、ストーリーとして考える必要があります。 自社分析はどう? 自社のB/Sを競合他社と比較し、資金の使い方や調達方法における自社の特徴を整理することにより、より戦略的な資金運用が可能になると感じています。 カフェ投資の意義は? 教材の事例として取り上げられたカフェの初期投資では、提供価値を踏まえ、必要な固定資産へ重点的に資金を投入する方が効果的だという結論に至りました。自社の場合、広告宣伝費や工場の設備投資など、どこに資金を向けるかをこのカフェの事例と照らし合わせながら考えてみることが有意義だと思います。 失敗から学ぶ? さらに、資金の使い方と調達方法において失敗した事例から学ぶことも重要です。具体的な金額の決め方や負債の判断基準がまだ十分にイメージできていないため、失敗例からどのような判断が誤っていたのかを把握し、今後の改善に活かしたいと考えています。

データ・アナリティクス入門

実践×代表値:新たな視野をひらく

代表値の種類は何? 分析や比較を容易にするためのデータ加工の方法について学びました。まず、代表値として単純平均、加重平均、幾何平均、中央値の4種類があること、また散らばりを表す指標として標準偏差(分布も含む)があることを理解しました。これまでの業務では単純平均と中央値を主に使用していたため、各数字に重みを付ける加重平均や、全データを掛け合わせる幾何平均を知ったことで、数値の見せ方に新たな視点を持つことができ、とても興味深く感じました。さらに、ローデータからグラフ化する際に、各代表値ごとの違いを意識することで、より適切なグラフやビジュアル表現が可能になると感じました。 業務評価の新手法は? 直近の業務では社内アンケートを実施する予定があり、満足度などの評価数値に対して、従来の単純平均や中央値に加え、主要ターゲット層の受講率を掛け合わせた加重平均も算出してみたいと考えています。これにより、より実態に即した評価ができると期待しています。 エクセル関数はどう組む? 一方で、各代表値の意味は理解したものの、エクセル上で関数をどのように組むかについてはまだ確認が十分ではありません。特に、幾何平均で平方根が出てくる点については苦手意識がありますので、ミスなく計算できるように仕組み化できないか振り返りたいと思います。また、2SDルールについては基本的な理解はあるものの、具体的にどのように活用すべきかというイメージが定まっていないため、いくつか事例を確認して今後の活用方法を模索していく予定です。

データ・アナリティクス入門

数字が語る学びの物語

データ全体像は? データ比較や数値化、数字に集約して捉える方法、さらには視覚的および数式を通じて関連性を把握する手法について学び、大変参考になりました。これにより、データの全体像を把握しやすくなると感じています。 平均の違いは? 目的に応じて、単純平均だけでなく、加重平均、幾何平均、そしてはずれ値に対応する中央値など、さまざまな平均値の使い分けが有用であると再認識しました。数字を分析する際、データの中心値と散らばりを考えるアプローチは非常に重要です。 標準偏差はどう? 特に、これまであまり意識してこなかったデータのばらつき、すなわち標準偏差の理解については、自己学習が必要だと思いました。今回の学習を通して、データ分析においてばらつきの考慮が結果に与える影響の大きさに気付きました。 実践はどう進む? 今後は、学んだ知識を生かし、エクセルを活用してグラフ化するなど、実践的なアプローチに取り組んでいきます。また、どのデータを分析するかはまだ模索中ですが、さまざまな場面で応用できるよう、引き続き自己研鑽を積んでいく予定です。 難解概念の壁は? 一方で、「平方根」、「標準偏差」、および「正規分布と2SD」といった概念は難解に感じたため、これらの理解を深めるためにさらなる学習が必要だと感じました。また、過去に業務で使った経験がある「幾何平均」についても、当時はあまり考えずに対応していたため、Raw dataを見直しながら基礎から再確認していきたいと考えています。

データ・アナリティクス入門

平均だけじゃ語れないデータの魅力

平均値だけじゃない? データを可視化する際、平均値を中心に考えがちですが、加重平均や幾何平均といった別の手法も存在し、目的に応じて使い分けが必要だと改めて感じました。また、平均値は外れ値の影響を受けやすいため、標準偏差での比較やグラフを用いて全体のばらつきにも注目することが重要であると学びました。 ヒストグラムの理由は? 年齢分布のグラフについては、ヒストグラムを選択しましたが、その理由が十分に明確にできていなかったと感じています。なぜヒストグラムが最適なグラフであるのか、今後は選択した理由を具体的に説明できるようにしていきたいと思います。 指標の選択は? 過去データとの比較を行う際、単純平均や割合のみに頼るのではなく、数値の規模やばらつきも考慮して加重平均や幾何平均、さらには中央値など、複数の指標を取り入れる必要があると再認識しました。 仮説思考はどう? また、データ分析のプロセスにおいて、これまであまり意識していなかった作業の流れを見直し、今回学んだ「仮説思考のプロセス」を参考に、目的を明確にし仮説を立てながら作業を進めていくことが大切であると感じました。 資料のまとめ方は? さらに、分析データを資料にまとめる際には、記載している数値(代表値)がどのようなものなのか、またどのようにグラフ化しているのかを明確にすることが求められると考えています。業種によっても適切な可視化方法が異なるため、差し支えない範囲でその違いを把握し、説明できるよう努めたいと思います。

「分析 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right