クリティカルシンキング入門

分解で発見!学びのチャレンジ

分解の意義は? 「分けていく」ことは、理解を深めるための重要な手段です。たとえば、数字を活用する際には、まず全体を定義し、目的に沿った切り口で分解することが求められます。このプロセスは、結果がすぐに見えてこなくても、どこに傾向があるかを把握する手助けとなります。 迷いはどう克服? 分解する作業に迷いが生じた場合も、早急に結論へたどり着くために、思い切って分解を実施してみることが大切です。時間をかけて検討するより、まずは行動してみることで、意外な発見に繋がることもあります。 課題の本質は? 顧客実績のデータ分析においては、これまで曖昧な課題から無理やり示唆を引き出してしまうことがありました。そのため、問題提起の初めに目的を明確にし、「問題箇所」の特定、「原因究明」、そして「解決策」の各ステップを順序立てて検討する姿勢が必要です。 相談で解決する? また、業務に関しては、同僚や部下との相談を積極的に行い、情報の整理や意見交換を通じて、より良い解決策につなげることが望まれます。

アカウンティング入門

数字が語る学びのヒント

事実と解釈は明確? 前回の報告と比べ、今回はPLの内訳についてより具体的に触れられていると感じました。会話と数値だけで状況を読み取ろうと、できるだけ事実をアウトプットすることに努めましたが、その中で得た解釈や気づきについても、追記することで明示することが重要だと実感しました。今後は、事実と解釈を明確に分けて整理するよう心がけたいと思います。 報告改善の方向性は? また、今後の改善点として以下の三つを挙げます。まず、数値報告の際には、数値データの事実に基づいて分析を行い、その結果を踏まえた仮説を立てること。次に、計画作成においては、管理面と財務面の双方から重要項目を押さえ、予実の管理と戦略策定につなげられるようにすること。そして、直近の年次計画策定にあたっては、重点項目について関係各所と目線を合わせるよう努めることです。 実務の学びはどう? さらに、実業務でのPLやBSの取り扱い方、そして今回の飲食店ビジネスモデルから得られた知見も、今後の学びに活かせる点が多く感じられました。

データ・アナリティクス入門

数値分析で掴む学びの一歩

数字の意味は? 数字だけが羅列されているデータは、そのままでは意味を把握しづらいと感じました。データを適切に加工することで、理解が深まると思います。 数値の分析法は? 数値の分析にあたっては、代表値や散らばりに注目する必要があります。代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、それぞれの状況に合わせた選択が求められると感じました。 年齢層の傾向は? また、コミュニティ内の受講生の年齢層を考える場合、単純平均だけでなく、中央値や散らばりも分析することで、どの層にアプローチすべきか、またはまだ十分に届いていない層に合わせたサービス展開を検討できると考えました。 情報収集はどう? 現状、年齢データを明確に把握する手段がないため、まずはアンケートの実施や入会時のデータ取得を通じて、年齢情報の収集が必要です。さらに、退会者数についても、単なる人数の推移のグラフではなく、どの時期に退会率が高いのかといった散らばりも視覚化することで、より具体的な分析が可能になると思います。

データ・アナリティクス入門

数値分析の極意を学び事業改善へ

分析とは何を指すのか? 目的を明確にしないと、意味のないただの計算・数値になってしまいます。「分析」とは「比較」であり、比較の条件をそろえることが大事です。分析は考察までがセットです。この点を理解することで、意味のある数値やグラフの種類を適切に判断できるようになると思いました。 データをどう活用する? 例えば、WEBサイトやSNSの効果測定では、数値が自動的に出てきますが、それをどう考察するかが重要です。また、アンケート結果の分析では、目的を整理してから項目や回答のさせ方を決めないと、分析できないデータや目的に合わないデータになってしまいます。 明確化の重要性 分析の目的・ゴールを明確化することを最重要視することが肝心です。目の前の数字の増減だけにとらわれず、分析手法やその後の考察までを意識してアンケート設計を行う必要があります。 学んだことをどう実践する? 業務上、数値分析をする機会が度々あるので、今後は学んだことを意識しながら分析手法や報告内容を改善していきたいと思います。

クリティカルシンキング入門

仮説検証で視野を広げる思考法

切り口で見える? 複数のデータから一つの仮説を立てる際、切り口を変えると見え方が異なることがあります。これは、文章や言葉だけでなく、数字を分析する際にも思考が偏ることがあり得ると感じさせられました。今見えている情報に基づいて判断することに疑問を持つきっかけとなったと思います。 分析で何が見える? 事務リスク発生の原因分析においては、数値を扱う際の前処理やカテゴライズの過程で切り口を変えることが有効だと感じました。残業時間の増加や処理目標未達成の原因を分析する際にも、同様の手法で切り口を変えてカテゴライズすることで、見過ごされている問題を発見できる可能性があると思いました。 区切ると何が見える? 原因分析時のカテゴライズでは、単にキリのいい数字で区切るのではなく、仮説を立てた上で細かく区切ることが重要です。また、一度作業を終えたらそれで結論とせず、他に考えられる要素がないか一度立ち止まることも大切です。全体の定義を明確にし、漏れや重複がないように意識して区切ることを心がけるべきです。

マーケティング入門

顧客の声に秘めた未来の鍵

本音の声をどう捉える? 顧客の表面的な声や要望だけでなく、その背景にある本当の気持ちを深く理解することが大切だと感じました。たとえ同じ商品であっても、名前や見た目の違いが売り上げに大きな影響を与えることがあるため、細部に気を配る必要があります。 戦略の見直しはどう? また、世の中は常に変化しているため、マーケティングの手法や戦略は常に見直すべきだと考えます。一度出した結論や対策であっても、時代の流れに合わせて再評価することが、新たな発見や改善につながるでしょう。ブログ記事のタイトルやWebアプリのデザインなど、具体的な点も定期的に見直していくことが重要です。 スキルの活かし方は? さらに、たとえ現状の職業がなくなったとしても、これまで培ってきたスキルや経験を個々に分解し、どの部分が今後活かせるかを確認することも重要です。データ分析の数字を見るだけでなく、SNSなどで寄せられる意見やメッセージに目を向けることで、人々が本当に求めているものをより深く想像することができると実感しました。

クリティカルシンキング入門

視点を広げるセグメント分析の挑戦

切り口は十分ですか? 切り口については、もれなく重複なく組み合わせ、詳細化できていました。しかし、視点が不足していることに気づきました。例えば、お客様の分け方や、店舗側の情報の分け方など、他にないかと自問を繰り返し、新たな示唆を模索したいと思います。 社内情報の組み合わせは? お客様の情報に基づく分解は行っていたものの、社内の情報、例えば地域、経験年数、所属組織などを組み合わせることで新たなセグメントを作れないか試してみます。また、差がないことが判明することも価値のある情報だと理解しました。そこで、まずは試してみるという姿勢で臨むことにしました。 データの傾向はどうですか? 具体的には、まず切り口の分類として、お客様情報、営業社員情報、商品情報などを挙げ、それぞれの分類を詳細化します。そして、来週月曜日にデータに適用して傾向を確認する予定です。さらに、詳細化を進めるために切り口の組み合わせを試し、数字だけでなくグラフで視覚化することで、全体像を捉えたり、比較しやすい状態にします。

アカウンティング入門

財務分析で新たな未来を切り拓く

アカウンティングはどう見る? これまで「アカウンティング」という言葉には専門的で難しい印象があり、避けがちでした。しかし、数字の読み方に関する共通ルールを学ぶことで、そのハードルが下がるのではないかと感じました。まずは基本ルールの習得に力を入れ、次週以降の講座で役立てていきたいと思います。 財務分析どう活かす? 新規事業の提携先企業や、既に出資している企業の財務状況を分析する際に、この知識を活用したいと考えています。また、出資先候補が本来投資すべきでない場合、財務分析の結果をもとに適切に判断をしていきたいです。さらに、経営状況が悪い投資先企業には、業務改善に向けたコンサルティングを提供し、データに基づくPDCAを実行したいと思います。 知識はどう定着する? NANO単科講座の受講を通じて学び得た知識は、授業終了後も引き続き定着させ、実際のビジネスにおいて財務分析を自ら積極的に活用できる環境を作りたいと考えています。また、他社の決算情報などに積極的に触れることにも努めたいです。

データ・アナリティクス入門

受講生が語る学びの鼓動

平均と分布、どう考える? データの平均値を見る際には、数値の散らばりも把握することが大切です。また、代表値を選定する時は、元データの傾向を十分に理解し、適切な判断を下す必要があります。やみくもな分析に陥らず、常に仮説を組み立てる姿勢が求められます。 分析法はどうあるべし? 分析を進める際は、まず利用可能なフレームワークを用いて仮説を明確にし、必要なデータが不足している場合は自ら収集するなどの努力が必要です。数字の根拠に基づいたストーリー構築が重要であり、グラフを効果的に活用することで、視覚的にもデータの傾向を把握できます。 仮説はどこから? リサーチの機会は多くありますが、その前プロセスを軽視せず、解決すべき問いと対応する仮説をしっかり持つことが肝心です。仮説検討時には、使えるフレームワークを積極的に取り入れることで、的確な分析が可能になります。 分析目的は何? 何のための分析なのか、その目的を常に明確にしながら、説得力のあるストーリー作りに努めることが求められます。

データ・アナリティクス入門

データを読む力で広がる新視点

数字の壁は本当? データ分析に関して、「数字が得意でないとできない」という思い込みがありましたが、実際にはデータの読解力が重要だと感じました。データと情報を比較することで状況を把握しやすくしたり、意思決定をしやすくする手法の一つとして、どのような目的や仮説で分析を行うのかが最も重要な根幹部分であることに気づきました。 旅行動向はどう? 具体的な例として、訪日旅行観光客の市場動向と顧客行動の把握があります。どの国からの訪日観光客が増えているか、減っているか、滞在日数、1人当たりの消費額、訪問都市やその数、そして訪日旅行に求めていることや課題について分析しました。 立ち位置はどう評価? 会社が策定している中期経営計画の目標達成のためには、訪日旅行という分野において、自社が業界内でどのような立ち位置や状態になるべきかを明確にする必要があります。そして、その状態を達成するために必要となる情報やデータを考慮し、どのような戦略を打ち出すべきなのかについて検討することが求められます。

データ・アナリティクス入門

比較で見つける日常データの宝石

データの隠れた意味は? 「分析は比較なり」という講師の言葉に、これまでの自分のデータに対する見方を改める衝撃を受けました。単に手元にあるデータだけでは、平均値や統計情報といった基準を算出することができず、その中に秘められた情報を読み解く重要性を再認識する機会となりました。 数字以外も活かせる? また、データ分析と言えば数字を思い描くことが多いですが、文字列などで表現される資料もまたデータであると教わりました。間接部門で働く中で、これまでデータに対して多少なりとも距離を感じていた私にとって、まずは日常の中で身近に存在するデータを取りこぼさず活用することの必要性を実感しました。 管理と復習は十分? 具体的には、毎日、毎週、毎月の使用単位で見落としがないかデータをチェックすること、一元的な保管場所を確保してデータの集計状況を整えることが挙げられます。迷ったときは今回の学びを振り返り、復習を繰り返すことで「データとは何か」を体で覚えていくことが大切だと感じました。

データ・アナリティクス入門

仮説と数字で描く未来

どの要因を重視する? より良い分析を行うためには、単に手法を実施するのではなく、実態だけでなく、事象の背景にある要因に目を向け、仮説の設定に力を入れることが重要です。たとえば、期間、事業部、他社との比較や、売上を数量と単価といった要素に分解して、その関係性を明確にすることが求められます。 どの数値に注目すべき? 現在、次期中期経営計画策定に向け、社内外の事業環境および自社の事業構造の把握に努めています。中期的な戦略を練る上では数値が非常に重要であるため、その分析結果をもとに、部内の若手社員と見立てを共有し、意見交換を進めることを目指しています。 仮説検証、どう進める? また、これまで手薄だった社内データの分析についても、各種検証を重ねた結果、実施可能な体制が整いつつあります。データ分析にあたっては、仮説設定を重視し、エクセルのピボットテーブルや統計ツール、可視化ツールを活用しながら、複数のメンバーで議論を交わし、一定の結論に導くプロセスを進めています。
AIコーチング導線バナー

「数字 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right