データ・アナリティクス入門

プロセスで発見!学びの秘密

原因はどこにある? 問題の原因を探るためには、まずプロセスを細かく分解し、各段階でどこに問題が潜んでいるかを仮説検証する手法が重要です。複数の選択肢を洗い出し、根拠に基づいて適切な判断を下す点にも着目しています。また、A/Bテストを実施する際は、できるだけ条件を整えた上で比較することが求められます。 効果的な分析法は? 具体的なデータ分析の方法としては、まずステップを踏みながら問題の精度を高めるアプローチと、仮説をもとにデータを収集し、より良い解決策に結び付ける手法が組み合わされています。これにより、最適な解決策の検出が可能となります。 分解とテストの極意は? プロセスを分解する方法とA/Bテストのポイントを組み合わせることで、より高度なデータ分析が実現されます。仮説検証と条件を揃えた比較の両面からアプローチすることで、実際の検証結果に基づいた改善が期待されます。 実例から学ぶには? 実際の事例としては、ポイント会員向け利用促進キャンペーンにおいて、若年層の反応を探るために、若者が関心を持つジャンルの店舗を複数選定し、クリエイティブのA/Bテストを実施する計画が挙げられています。過去のキャンペーンデータを活用し、ポイント付与がどの層の購買に影響しているかを機械学習を用いてアプローチする手法も取り入れられています。 次回でどう活かす? 次回のキャンペーンでは、会員データからターゲットとなる層の購買パターンを複数洗い出し、ロイヤルカスタマー化につながる経路を明らかにすることが目標です。洗い出されたカスタマージャーニーに基づき見込み客にアプローチし、その反応をPDCAサイクルで検証・改善していく計画です。 全体をどう見る? 全体として、プロセスの分解とA/Bテストの方法を的確に押さえたアプローチが示されており、仮説検証を実際のデータに基づいて試すことで理解が一層深まる内容になっています。今回学んだ内容を次のプロジェクトでどのように活かせるか、引き続き考えていきましょう。

データ・アナリティクス入門

仮説思考が拓く学びの扉

仮説思考は何のため? 仮説思考は、効率的な分析を行うために欠かせない手法です。基本的なステップは、目的(問い)の把握、問いに対する仮説の設定、データの収集、そしてそのデータをもとに仮説を検証する、という四段階で構成されます。 どのデータを集める? データ収集の方法は大きく二つに分かれます。まず、既存のデータを集める方法として、検索エンジンや各種リサーチサイトを活用します。次に、まだ存在していないデータについては、実際に観察したり、有識者へのヒアリングやアンケートといった方法で収集を行います。 五視点はどう活かす? また、仮説思考を実施する際には、以下の五つの視点が重要です。インパクトではその影響力の大きさを、ギャップでは何がどのように異なるのかを捉えます。トレンドでは時間的な変化や変曲点、外れ値に注目し、ばらつきではデータの分布が偏っていないかを確認します。最後に、パターンの視点からは、法則性があるかどうかを見極めます。 グラフ化の手順は? グラフ化を行う場合には、次の三つのステップが有効です。まず、仮説や伝えたいメッセージを明確にし、次に比較対象を設定、そして適切なグラフを選んで情報を整理します。 経験が必要な理由は? 仮説思考については、これまでチームでの実践経験がないため、上司に相談しながら取り組むことが望まれます。一方、データ収集に関しては、企業独自の情報をうまく活用することで、新商品の開発に役立つ可能性があります。また、来月更新される免税施策に関しても、その対応方法を検討していく必要があります。 新規取り組みの課題は? 組織の一員として新たな取り組みを始めるのは容易ではありませんし、チーム全体が仮説思考の本質を正しく理解しているかどうかも不透明です。来週から開始されるデジタルのショッピングクーポンの運用にあたっては、まずデータ収集を行い、半年先や来年度の数字を分析する可能性を模索するものの、まずはデータ収集自体に時間を要する点が懸念されます。

データ・アナリティクス入門

目的と仮説で切り拓く分析の道

目的と仮説の意義は? 分析のプロセスを学ぶ上で大切だと感じたのは、まず目的と仮説の設定の重要性です。初めにしっかりと目的や仮説を設定しておくことで、分析中に迷ったときもその軸に立ち返り、方向性を調整することができます。一方、分析を進める中で既に立てた目的や仮説が現状に合わないことが分かれば、柔軟に振り返って調整・修正することも必要だと実感しました。 伝え方の極意は? また、分析結果を伝える相手を具体的に想定することが重要であると学びました。相手の立場や背景を考えずに分析を行うと、数字の羅列に終始してしまい、メッセージ性が希薄になる恐れがあります。目的設定と結論を伝える相手の明確化が、データ収集や加工、発見のプロセス全体を論理的に整理する鍵となると理解しました。 予想外の結論は? 一方で、講義の中でビッグデータの扱いに際し、予想外の結論が導かれる場合があるという点に、不安も感じました。どのような分析でも、蓋然性の高い結果かどうかの検証や、批判的に結果を捉える視点は欠かせません。こうしたリスクを回避するためにも、分析は一人で完結させるのではなく、周囲とのコミュニケーションを大切にしていきたいと考えています。 依頼背景を考える? 私の業務は予算管理で、主に予実比較を担当しています。これまでは、他部署からの漠然とした依頼(例えば「売上の減少」や「費用の増加」)に対し、データが示す傾向をもとにすぐに分析を行うことが多かったのですが、今回学んだ目的と仮説の設定の重要性を踏まえ、依頼の背景をしっかりと把握する必要性を感じました。 積極分析の進め方は? 今後は、例えば売上減少の原因調査において、単に結果だけを追うのではなく、依頼の背景や意図を明確にし、適切な仮説を検証するプロセスを重視していきます。また、一般的な依頼に対しては、既に認識されている問題に取り組むのではなく、未発見の課題や潜在的な問題を先に見つけ出すような、より積極的な分析を目指していきたいと思います。

データ・アナリティクス入門

データ分析で見抜く!成功の秘訣とは?

代表値や散らばりは? 今回の学びでは、データ分析における重要なポイントを整理しました。まず、定量分析を行う際には、「代表値」と「ちらばり」の両方を把握することが重要です。代表値には、単純平均や加重平均、幾何平均、中央値があり、それぞれの特徴を理解することでデータの中心を捉える手助けになります。また、平均値を算出する際には、外れ値の確認が不可欠です。ちらばりには、標準偏差や正規分布があり、それらを活用してデータの散らばり具合を把握します。さらに、データをビジュアル化することで、特徴的な傾向が捉えやすくなりますが、その際には正しいグラフを選択することが求められます。 相関か因果か? 次に、相関関係と因果関係の分析についてです。相関とは二つの要素がどのように関連しているかを示すものであり、因果関係とは原因と結果の関係です。これらをセットで分析し、次の打ち手を考察することが重要です。しかし、因果関係は誤認しがちであるため、自分の都合の良い分析結果に偏らないよう、常に意識して考えることが必要です。 分析は比較ですか? 今回の復習では、分析とは比較であることを再確認しました。問から仮説を立て、データ収集を経て、それを検証するというプロセスを繰り返すことが基本です。インパクトやギャップ、トレンドなど様々な視点からデータを分析し、グラフや数値、数式を使うことが有効です。 ツール選択はどう? 現状では、時系列分析を多用しており、分析ツールとしてTableauやSPSSを利用しています。これにより、顧客データや売上データ、プロモーション費用などを扱っています。具体的な分析例として、まず相関関係の分析においては、売上とプロモーション費用との関連を見て、どのプロモーションが効果的であるかを判断することを目的としています。また、パレート分析では、顧客をグルーピングし、どの顧客が優良であるかを可視化しています。これにより、優良顧客の特徴を把握し、効果的な販促やプロモーション計画の立案に活かしていきます。

戦略思考入門

視点を広げ、競争を勝ち抜く差別化戦略

差別化の意味は? 差別化の目的は「顧客に選ばれること」であり、競合他社との違いを強調することは単なる手段に過ぎないと理解しました。このため、同業界のみならず他の業界からも幅広い視点で差別化を検討する必要があります。そして、考える施策が顧客にとって望ましいかどうかも重要であり、自社にとって効果的な差別化施策を見出すことの難しさを痛感しました。 顧客視点はどう? 今回の学習では、自社の製品やサービスの分析だけでなく、自分自身が顧客として製品・サービスを選ぶ際にも差別化を意識することが肝要であると感じました。 採用でどう差別化? 人事業務の中で特に差別化を考えやすいのは採用の場面です。例えば、給与を競合他社よりも高く設定するというコストリーダーシップ戦略には限界があるため、他社との差別化を図る必要があります。そこで、福利厚生や社風、働く環境といった金銭以外の要素を訴求し、応募者に自社の魅力を伝えることが有効です。そのため、まずは自社へ応募してくる人々がどのような企業と競争しているのかを調査し、企業選択における重要な要素を人材エージェントから収集・分析します。さらに、自社のSWOT分析と組み合わせて訴求ポイントを明確に整理します。 組織開発の秘訣は? 私の主な業務である組織・人材開発については、自社分析というよりも、世の中にある関連サービスの差別化ポイントを見極め、自社の強みを伸ばし弱みを克服するために最適なサービスを選ぶことが重要だと感じました。自社の課題を解決するために適したサービスを見極めるには、各会社が提供するサービスの訴求ポイント(低価格、独自機能、細やかな対応など)を徹底的に分析する必要があります。 施策選びはどう? 組織・人材開発の施策を企画する際には、まず自社のSWOT分析を行い、課題としてネックになっている要素(コスト、種類、使い勝手など)を抽出します。その後、各社のサービスがそれぞれの要素に対してどのような提供内容を持っているかを整理し、比較検討します。

データ・アナリティクス入門

仮説で解く!未来への挑戦

仮説分類はどう理解? 仮説の分類について学んだことで、結論の仮説と問題解決の仮説という二つの考え方を理解することができました。結論の仮説は、ある論点に対して仮の答えを示すもので、たとえば、ある飲料メーカーがノンアルコール商品の健康面へのアピールを通じて客層を拡大した事例が印象的でした。一方、問題解決の仮説は、現状の現象から原因を究明し、対策や予防策を講じるための仮説であり、データの収集と分析能力の向上が不可欠であると感じました。 仮説で説得力は増す? また、仮説を立てることで検証マインドが育ち、他者に説明する際の説得力が増すことを実感しました。エビデンスに基づく行動が、具体的な改善策の実現を後押しすると考えています。 減少原因は何? 具体的な事例としては、まず勤務先の大学において、受験者数が過去4年間で大幅に減少している現状があります。この原因を解明し、定員確保につなげるためにも、仮説の活用が大変有効だと感じています。 精神問題はどう見る? さらに、偏差値の高低にかかわらず、精神的な問題を抱える学生が増加している点にも直面しています。ADHDやASD、ゲーム依存などの問題が見られ、これが原因で学生間や教職員とのトラブル、保護者からの苦情、さらには退学や留年の増加につながっていると考えています。これらの現象について、過去の研究や調査、実践活動報告を参考にしながら、本学での適切な対策を検討するために、問題解決の仮説を立てて取り組む必要があると思います。 対策の進め方はどう? 具体的には、まず学生相談室や担任、教職員へのアンケートを実施し、各部署からの情報を集約します。次に、問題とされる事案の件数や種類、これまでの対応内容とその結果を整理し、国のガイドラインやマニュアルと照らし合わせることが求められます。さらに、他大学で実施されている取り組み事例を調査し、本学で実施可能な対策案を策定します。その際、専門知識を持った人材や協力可能な関係機関との連携も視野に入れる方針です。

データ・アナリティクス入門

仮説構築で新たな視点を得る方法

仮説構築の秘訣は? 仮説を構築し、データを活用して問題解決を進めるためには、いくつかのステップが重要です。まず、問題の発生箇所を明確にすることが必要です。具体的には、問題の所在を深掘りするために、原因仮説を立て、検証のためのデータを集めます。仮説を効果的に立てるためには、フレームワークの活用が有用です。 4Pのポイントは? マーケティングの視点では、4Pフレームワークを使って事業展開を整理することができます。製品、価格、場所、プロモーションの各要素が顧客のニーズや適正かどうかを評価します。適切なデータを集める方法としては、既存データの活用やアンケート、インタビューが挙げられます。各手法の長所と短所を理解して、目的に応じた選択が求められます。 多角的検証は? 仮説を立てる際には複数の仮説を用意し、異なる視点から網羅的に検討することが大切です。仮説の検証に際しては、比較の指標を意識的に選択することが必要です。具体的には、データを収集・分析し、仮説に説得力を持たせるためには、反論を排除する情報まで検討することが重要です。 意義はどこに? 仮説設定の意義としては、検証マインドや問題意識の向上、迅速な対応が可能となる点が挙げられます。こうしたプロセスを経ることで、自分の業務に対する関心を高めることにつながります。 販促の効果は? 販促企画の効果検証や販売目標達成の実績を見る際には、売り上げが伸び悩んでいる商材を特定し、どの要素に問題があったのかを4Pを用いて検証することが求められます。これを元に具体的な施策の効果を評価し、次の糧とすることが重要です。 実績比較はどう? 販売実績を基に、商品ごとの実績を昨年と比較し、価格変動の影響や来客数の動向、プロモーションの効果を定量的に評価すべきです。それにより、次年度の方針を検討することが可能となります。このように、精緻な分析を通じて課題を明確にし、解決策を打ち立てるための指針とすることが重要です。

データ・アナリティクス入門

問題解決のプロセスを極めた学び

どうやって問題を整理? 問題解決の第一歩は「何が問題ないのか」を具体的に整理することです。この際、関係者間で「あるべき姿」と「現状」に対する共通認識を持つことが重要です。基本的な流れは、①「何が問題か?」②「どこに問題があるか」③「なぜ、問題が起きているか」④「どうするか」ですが、必ずしもこの順序に縛られる必要はなく、各ステップを行き来することが求められます。 ロジックツリーは有効? ロジックツリーの活用により、全体像を意識しやすくなります。MECE(Mutually Exclusive, Collectively Exhaustive)の考え方に基づいて、意味のある方法で問題を分けることが肝要です。 売上回復の道は? 売上が低迷している商品のリニューアルを考える際には、売上を回復させる目標を新規購入者の獲得なのか、離脱者の呼び戻しなのかによってターゲットやパッケージの方向性が変わってきます。関係者間で売上回復の基準を共通認識として持っていることが必要です。提案を説得力あるものにするためには、MECEを活用して効果的な方向性や代替案を提示します。 市場分析は足りる? プロダクトアウトの新商品の方向性を検討する場合には、市場分析が不足している段階で商品化が決定されたケースもあります。例えば、コンセプト調査を行ったものの生活者の反応が芳しくない場合、ロジックツリーを通じて問題の仮説を立て、検証し、解決策を模索します。 選択肢は適切? アンケート調査では、選択肢設定にMECEを用いることで効果的な結果を得ることが可能です。 プロセスの流れは? 商品化作業に取り組む際のプロセスは以下の通りです。まず、問題の共通認識を揃えるためにデータ収集を行い、関係者間で問題認識を共有します。次に、チームでロジックツリーを用いて網羅的に「Where」「Why」「How」の案を出し、それに基づいて方向性の第一候補と代替案に絞り込みます。その後、経営陣にこれを共有します。

クリティカルシンキング入門

思考の偏りを解消するクリティカルシンキングの力

クリティカルシンキングの目的とは? ワークを通して、思考は偏りやすいことがよく分かりました。クリティカルシンキングを学ぶ目的は、頭の使い方を知り、思考の偏りをなくすことだとわかりました。その際、有効な方法の一つがロジックツリーで、考えやすい部分だけを掘り下げないようにすることができます。私はアイデアが浮かんだ際に、物事のある一面だけを膨らませて進めようとする癖があるため、まずは目的達成に必要な要素を整理するようにしたいと思いました。 お客様の声にどう対応する? 私はソフトウェアの保守サイトの運営やコンテンツの制作を担当していますが、お客様アンケートなどで「情報は豊富にあるが、目的の情報にたどり着かない」という声を多くいただきます。この課題をクリティカルシンキングを学んで解決したいと考えています。お客様によって導入の目的、運用スキル、使いたい機能などが異なるため、それぞれの目的の情報にたどり着くためにどのような導線を用意すればよいのか?その際、どのような視点でお客様の行動を分析するのがよいのか?などを、社内の複数部門で連携し仮説を立てているのですが、いずれのシーンでも判断が難しい状況です。クリティカルシンキングで思考の制限を取り除くことができれば、このような場面で正しい状況判断ができ、効果的なCX改善につなげられると思っています。 思考制限を取り除くには? 自分の中で思考を制限してしまわないように、広くいろいろな立場の人の意見を収集して課題分析することが必要だと思いました。最近は会社の方針で時間の節約を求められるため、限られたメンバーの意見をもとに課題の改善検討を進めることが多くなっています。講座の中でも「社内の常識は非常識」という話が出ていましたが、社外の専門家の意見などを幅広く収集する機会を増やしてもよいと思いました。また、収集した課題をロジックツリーなどにあてはめ、要素分解することで、課題の本質が想定外のところにあることに気付ける機会を得られそうです。

データ・アナリティクス入門

仮説を駆使して問題解決力を高めよう

問題解決のステップとは? 問題解決の4つのステップの「Where」は、問題の所在の仮説を立てることであり、「Why」に繋がっていく。今回はその「Where」について学んだ。 仮説の立て方とは? 仮説とは、ある論点に対する仮の答えもしくは、分かっていないことに関する仮の答えである。重要なポイントは、複数の仮説を立てることと、それらの仮説同士にある程度の網羅性を持たせることである。また、仮説を検証するためのデータを評価する際には、何を比較の指標とするか、意図的に何を見るかを考えることが求められる。そのため、数字を計算する手間を惜しんではならない。 検証マインドをどう育む? 仮説を考えることで、検証マインドの向上と説得力が高まり、関連することを調べることによって意思決定の精度も高まる。結果としてステークホルダーに対する説得力が向上し、問題解決のスピードもアップできる。アンケートなどを活用して情報を総動員し、考えることが重要である。また、「3C」や「4P」などのフレームワークを活用することも効果的である。 データ分析の重要性とは? データ収集においては、都合の良いデータだけを集めるのではなく、可能性を排除するために真剣にデータと向き合い、何と比較しての分析かを明確にする必要がある。会議資料や上長への報告を見返すと、実績や結果については真剣にデータを集めているが、データを元にした仮説設定や計算はほとんど実施されていない状況であった。結果だけを羅列するのではなく、それを根拠に仮説を立てるための計算や比較を行い、他の説を排除する仮説を設定することで、施策の根拠とし納得感を得られるようにする。 明日への準備は万全か? 明日が月初なので出てくる数字を元に、結果に対する複数の仮説を立て、その仮説に対する根拠を数字で計算・調査した上で問題解決の手段を考える。アンケートやヒアリングを日々実施しているが、分析に役立つアンケートとなっているか見直しも必要だ。

戦略思考入門

学びの視点を広げる経済性の理解

規模と範囲はどう違う? ■学び 「規模の経済性」と「範囲の経済性」について学びました。規模の経済性に関しては、初めは「大きければ良い」という認識がありましたが、実際にはコスト単価が上がることや、固定費や変動費を含めたより包括的な理解が必要であることに気づきました。 範囲の経済性については、複数の事業を運営することで経済性を高めることができるという概念は理解していたものの、「範囲の不経済」になる可能性も考慮しなければならないという新しい視点を得られました。その結果、範囲の経済性が競争優位性となるかどうかを十分に検討する重要性を認識しました。また、範囲の経済性を追求する場合、安易な多角化には注意が必要です。 業務効率は上がるの? ■規模の経済性を活かすために 業務の標準化と集約により、同じ業務を一つの部署やチームに集約することで、専門性を高め効率的な処理が可能になります。たとえば、経理業務や人事総務業務を一つの部門に集約し、共通のシステムやツールを導入することで、処理時間を短縮できます。 また、複数の部署で共通して利用できるツールを導入することで初期費用を分散し、学習コストを削減することが可能です。例として、クラウド型のグループウェアや会計ソフトを導入することで、情報共有を円滑にし、業務の可視化を図ることができます。 意見共有は役立つ? ■学びの復習と意見収集 学んだことを継続して活用するために、反復して経験することが重要です。具体的には、学んだフレームワークを用いて自分の会社や周辺環境に当てはめてみると良いでしょう。耳慣れない単語を調査し、一度口にしたりすることも有効です。頭を動かし、手を動かし、口を動かすことで学びを深めていきたいと思います。 さらに、自分が収集した情報をもとに徹底的に話し合い、意見を集めることで様々な発見があります。ナノ単科を共に学んだ同僚たちと意見を共有し合うことで、新たなシナジーを生み出すのも面白いと考えます。

データ・アナリティクス入門

限界突破!数字が紡ぐ経営判断

仮説検証はどう進める? Gミュージックスクールの採用問題を通して、「仮説立案→データ検証→解決策選択」のプロセスを実際に考える機会となりました。特に、機会コストの概念を用いて「何を諦めるか」を定量的に評価する重要性に気付かされ、データ分析によって感覚的な判断を論理的な根拠に基づく戦略へと変換する価値を実感しました。また、限界に近づいていたある従業員の工数という制約条件下で最適解を導く過程は、現実のビジネス課題の複雑さを改めて認識させ、完璧ではない解決策を採用する経営判断の難しさも感じさせました。 受注と労働はどう連携? 一方、労働集約型の企業においては、顧客獲得と労働力確保が相互に関連していると実感しています。今回学んだデータ分析手法を活用し、営業データ(受注量、案件規模、事業部別実績)と人材データ(残業時間、採用状況、離職率)の相関分析に取り組む予定です。具体的には、受注増加期における人材不足と残業の関係を定量化し、適切な採用タイミングと人員配置の予測モデルを構築することを目指しています。また、機会コストの視点から優秀な人材の流出による売上機会の損失を算出し、採用および定着への投資の優先順位を検討する考えです。 数値で見る採用戦略は? まずは、日々収集している営業データと人材データを統合管理できるダッシュボードを構築し、問題の可視化を図ります。次に、相関分析と予測モデルの検討を通じ、「受注増加期の人材不足が残業の増加、ひいては離職率の上昇という負のスパイラル」にどのような影響があるかを定量的に捉え、適切な採用タイミングを予測するモデルを作り上げます。さらに、戦略的人材投資を実践するために、機会コスト分析によって優秀人材の定着に伴う投資効果を算出し、個別の引き留め戦略を検討します。特定の熟練者への依存構造も可視化し、業務の標準化やスキル継承プログラムの整備により、事業成長と人材確保のバランスをより戦略的に実現する経営体制への転換を目指します。

「収集」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right