データ・アナリティクス入門

データの見方が変わる!定量分析の魔法

定量分析の視点をどう活用する? 定量分析の5つの視点(1. インパクト、2. ギャップ、3. トレンド、4. ばらつき、5. パターン)を学びました。データを漫然と眺めるのではなく、これらの視点で見ることで効率的に示唆を得られると感じました。特に、平均値を取る際に「標準偏差(データのばらつき度合)」という視点をこれまで考えたことがありませんでした。同じ平均値でも「ばらつきがある」か「ばらつきがない」かでデータの意味合いが変わります。今後は標準偏差も併せてチェックしていきたいと思います。 データ比較時のポイントは? 売上やサービス利用者数などのデータを前年度と比較する際には、定量分析の5つの視点を意識して数字を見るように心がけます。また、特定月における新規受講者や解約者を年代別に分析する際、これまで表に落とし込むことは行っていたものの、グラフ作成は少なかったです。今後はヒストグラムなどのグラフを活用し、ビジュアルで傾向を把握できるようにしたいと思います。これはチームメンバーにも促していきたいです。 チームでの視点共有は? まずは、学んだことを言語化し、チームメンバーと共有することが重要です。データの分析もチームメンバーと一緒に行う際、「Aさんはトレンドがないか」「Bさんはばらつきがないか」といった具合に、各メンバーに特定の視点で見る役割を依頼するのも良い考えだと思います。これにより、チーム全体として5つの視点を網羅することができます。 グラフ化で何を検証する? 最後に、各月のサービス利用者の新規受講率や解約率のデータが表として存在していますが、まずは先月のものを目的に応じてグラフ化し、理解の速度や深度にどのような違いがあるのか、グラフから意味ある示唆を導き出しやすくなるのかを検証したいと思います。

データ・アナリティクス入門

実践で分かる分析の極意

基本原則は理解できた? 今週は、ライブ授業を通して6週間の学習内容を実践演習で総まとめしました。初めに、1週目から学んだ基本原則に基づく比較分析や、データの種類に応じたグラフの加工・表現方法を改めて確認しました。また、データ分析を始める前に、目的や仮説の重要性についても再認識する機会となりました。 プロセスは理解できた? さらに、問題解決のプロセス(What・Where・Why・How)や分析のステップ(仮説構築・データ収集・データ分析・仮説検証)を実践する中で、やみくもな分析を避けることや、アウトプットのイメージを持ってデータ収集を行う大切さを痛感しました。 キャンペーン分析は進んでる? 私の業務では、電子マネー決済によるキャンペーンの分析を行っており、決済データをもとに利用者の定性情報や行動パターンを把握することで、決済回数や決済金額の増加に向けた施策の提案や効果検証を進めたいと考えています。 目的は明確になった? 現状の課題は、データ分析の目的や分析する内容が関係者の間で曖昧になっている点です。そこで、まずは分析の目的や問いを明確にし、何を分析するのかを関係者間でしっかりと共有・可視化する必要があります。目的や分析対象が定まれば、データ収集を実施し、その結果をもとに仮説構築を進めます。仮説構築の際も、重点的に検討すべき点を明確化し、関係者と共有していくことが重要です。 施策は具体的になった? また、現状分析では、各種フレームワークを活用しながら、問題点やその原因、そして打ち出す施策を具体的に明確にすることが求められます。最後に、データ収集および仮説検証の結果は、関係者にわかりやすく説得力のある形で伝えられるよう、適切なグラフを選んで可視化し、報告していく予定です。

データ・アナリティクス入門

仮説で未来を切り拓く!経営戦略の新視点

仮説の整理はどう? 問題解決のプロセスにおいては、「What」「Where」「Why」「How」といった仮説の立て方を4つのステップを通じて理解しました。また、「結論の仮説」と「問題解決の仮説」という2種類に仮説を分類できることも学びました。特に、家具メーカーのWebマーケティングにおける指標へのアプローチは、私にとって非常に参考になりました。メーカーで働く身として、定量的なKPIを用いた費用対効果の分析の重要性を改めて認識しました。WEEK04では内容が難しくなってきましたが、総合演習や課題に取り組みつつ、学びを継続し、単位取得に向けて努めていきます。 マーケ戦略の実践は? WEEK4で学んだ問題解決の仮説を職場で実践する予定です。「仮説思考をマーケティングに適用する」という視点から、3Cや4Pを効果的に利用し、リーダーシップではパッションを持つことを意識して行動したいと考えています。具体的には、ウイスキーの事例で、かつて高価とされていたウイスキーが、若者向けに手頃な缶製品として売上を拡大させた点を参考にしています。これは、今後の新商品の販売においても活用できると感じています。 未来予測の信頼は? 過去のデータを基にした予測はAIに頼ることが多いですが、未来の予測、つまり仮説を立てる部分においては、人間の方が優位であると感じます。他大学では生成AIを使用する学生が増えており、Web上での期末試験にも対策が講じられていることを知りました。生成AIに対抗できるよう、自らの仮説構築や現場課題の抽出を迅速に行い、PDCAサイクルをスムーズに回していきたいと考えています。今回学んだ知見を活かして、12月の競馬のレース、特にデータが少ない馬のレース予測にも挑戦してみるつもりです。

データ・アナリティクス入門

仮説と比較で読み解く数字の真実

仮説はなぜ重要? データ分析は、ただ数字を羅列するだけではなく、自分なりの仮説を立て、その仮説を検証するための手段であると再認識しました。数字を見てもただの数字遊びになってしまうため、最初に明確な仮説を設定し、その仮説に基づいて分析を進めることが大切だと感じています。 過去比較はどう読み解く? また、分析においては過去のデータとの比較が非常に重要です。たとえば、あるプロダクトの売れ行きが明確な季節変動を示している場合、過去の同時期や前年のデータと比較することで、その背景にある傾向に気づくことが可能になります。このような比較を通じて、何が影響しているのかを客観的に把握する意義を実感しました。 利用状況はどう見極め? 自社プロダクトの販売実績や機能の利用状況の可視化にも、こうしたデータ分析の手法を取り入れています。毎月、売れ行きや利用状況を分析し自分なりの考察をまとめていますが、最近は単調になりがちで、より深い洞察が求められていると感じています。たとえば、「なぜ売れているのか、なぜ売れていないのか」、「なぜ機能が使われているのか、使われていないのか」といった真因を把握するために、属性や業界別の利用状況・売上トレンドを過去データと比較して分析できるスキルを身に着けていきたいと思います。 仮説検証で何が変わる? さらに、データ分析を行う際は、まず自分なりの仮説を必ず設定することが基本です。たとえば、ある規模以上のお客様では機能利用率が高いが、規模が小さいお客様では逆の傾向があるといった仮説を最初に立てることで、その後の検証や分析がスムーズに進み、より多くの気づきを得ることができると考えています。これまで学んだ分析スキルを活用し、今後も実践的に取り組んでいきたいと思います。

データ・アナリティクス入門

あとひと手間!四段階で切り拓く解決力

どう問題解決する? 問題解決の基本プロセスとして、「What → Where → Why → How」の4つのSTEPを学びました。プロセスを細かく分解し、複数の選択肢を洗い出し、根拠をもって絞り込むことの重要性を強く感じました。日常の業務において、これらのステップをいくつも行き来しながら問題の原因を探る手法は、非常に実践的だと実感しました。 視点を変える意義は? また、仮説を立てる際には、問題に関わりがありそうな要素だけでなく、それ以外の視点にも目を向ける考え方が有益だと学びました。対概念で物事を考えるアプローチは、固定概念に囚われず幅広い視野で問題解決に取り組む姿勢を養うための大切なポイントです。 ABテストの真意は? さらに、ABテストを活用して施策の効果を比較し、条件を揃えた上でデータを分析するプロセスは、仮説検証の精度を高める上で非常に有効だと感じました。仮説を実践しながら効果を測定し、次のアクションにつなげる一連の流れは、今後の分析業務にも大いに役立つと思います。 離脱理由は何か? 加えて、ファネル分析によってユーザーの利用段階を明確に分解し、どのプロセスで離脱が生じているかを把握する手法も印象的でした。漏斗のように段階ごとに数値を追うことで、課題がどこにあるのかを具体的に把握できる点は、現場での運用改善に直結する大切な視点です。 実践で成長する? 全体として、これらのアプローチを繰り返し実践することで、柔軟かつ論理的な問題解決能力を養えると感じました。定量分析やアンケートを活用し、他者の視点も取り入れた説得力のある提案や、チーム目標の設定など、今後の実務や運用計画にも直結する内容で、非常に有意義な学びとなりました。

戦略思考入門

規模の経済性で印刷業務を改善する方法

規模の経済性とは何か? 実践演習を通じて、生産数量が増えることで1個当たりの固定費が減少すること、すなわち「規模の経済性」という用語を初めて知りました。しかし、単純に発注量を増やすだけでなく、需要のバランスや原材料の供給、品質、在庫管理の問題など、多様な要因を総合的に検討する必要があると実感しました。この考えは、私の業務である資材の印刷費にも応用できそうです。例えば、需要の確認や原材料費、印刷部数などについて、過去の経験に頼るのではなく、常に現状に合わせて見直す必要性を感じました。 戦略的思考をどう実践する? 総合演習では、業界の数値や状況をフレームワークで整理し言語化することで、自分が考えていた施策とは異なる施策の可能性を見出せることもありました。「戦略的思考」の3つの要点を達成するためには、適切なゴールを設定し、そこに至る道筋を明確化することが重要であり、それを他者に理解してもらうために言語化することを業務でも実践していきたいと思っています。 印刷費管理の課題とは? さらに、印刷費の管理では、大量印刷による倉庫管理費や廃棄コストについても見直しが必要です。紙の原価が上昇している現状において、常に需要を確認しながら印刷の必要性を再考することが求められます。これに対して、顧客ニーズや印刷利用数のデータを基に、毎回印刷部数とその必要性をメンバーと共に確認していく提案を進めていきたいです。 フレームワーク活用の重要性 また、総合演習から学んだ3C分析やPEST分析などのフレームワークは、実際に自分の業務で使ってみることによって初めて身につくと感じました。これらの手法を用いて、自分の考えを他者と共有し、適切なゴールや対応策を探求していきたいと思います。

データ・アナリティクス入門

仮説から挑む数字の物語

仮説はどこから来る? 分析の基本は、まずさまざまなデータを比較することにあります。細かなデータやグラフを確認する前に、自分なりの仮説を立てることが大切だと感じました。 3つの軸は何が違う? ここでは「プロセス」「視点」「アプローチ」という3つの軸が重要です。プロセスでは、目的を明確にし、仮説を立て、データを収集して、その仮説を分析により検証します。視点については、インパクト、ギャップ、トレンド、ばらつき、パターンなどに着目します。そしてアプローチとして、グラフや数字、数式を活用する方法が挙げられます。 可視化で何が分かる? 比較のための可視化には、数字に集約する方法、目で見て把握できるようグラフ化する方法、さらには数式にまとめる方法があり、状況に応じて適切な手法を選ぶことが効果的です。 代表値はどう見る? また、データを見やすくするためには「代表値」と「分布」を確認することがポイントです。代表値には単純平均、加重平均、幾何平均、中央値などがあり、ばらつきを把握するには標準偏差が有用です。特に、95%のデータが含まれるという2SDルールは、分析の信頼性を判断する際に役立ちます。 ノーム値は意味ある? クライアントのノーム値を算出して、予算シュミレーションに活用する手法も魅力的です。さらに、業界ごとにどの枠が効果的か比較検証することで、より適切なアプローチを模索することが可能だと思います。 実数値で検証できる? 実際のデータを利用してノーム値を算出する試みは、非常に価値があると感じます。社内にある関連データの算出方法や分析手法を参考にしながら、実数値での検証を進めることで、より実践的な知見が得られるでしょう。

データ・アナリティクス入門

ナノ単科で見つける解決のヒント

何が問題の始まり? 問題解決には、まず「何が問題か」「どこに問題があるのか」「なぜ問題が生じたのか」「どのように対応するか」というプロセスがあることを学びました。最初に、直面している課題や状況から現状とあるべき姿のギャップを把握し、次に客観的なデータを用いて問題箇所を詳細に特定します。この際、MECEやロジックツリーの手法を用いることで、抜けや重複なく整理することが重要です。さらに、問題の背景にある原因を細かく分解し、真の原因に迫る作業が求められます。最後に、さまざまな案を検討し、現状と理想を照らし合わせながら、適切な対策を導き出していきます。 なぜデータが重複? また、phaseごとに製造原価の算出を実施しており、算出データの取り込みとその活用が行われています。しかし、各phaseで実施している業務自体はほぼ同じ内容でありながら、同一データの取り込みなど、重複して実施している作業が存在しています。理想的には、データベースにphaseごとのデータが一元管理され、必要な時に迅速に利用できる体制が整っているべきです。しかし、現状では必要な時に都度データを作成し、同じ内容を複数回取り込むなど、業務に無駄が生じています。 原因はどう分解? このギャップの原因を明確にするためには、実際の業務フローや工数、業務のインプットとアウトプットの詳細、さらにはシステム上の問題点など、ファクトに基づいた確認が不可欠です。定量的なデータを捉えた上で仮説を立て、MECEやロジックツリーといった手法を活用して問題点を細かく洗い出します。こうした手法により、データの切り口を複数持ち、各要素の影響度を把握してプライオリティを付け、効率的に問題解決へと導くことができます。

クリティカルシンキング入門

データ分析で未来を切り拓く学び

なぜ情報を分解するのか? 状況を解像度よく理解するためには、情報を分解することが重要です。特に、数字はグラフ化が可能なため、非常に有効な手段となります。分解を行う際にはいくつかの注意点があります。まず、加工の仕方としては、表に追加する欄を考えたり、相対値を計算したりするなどです。また、グラフを作成することで視覚を働かせることも効果的です。 多角的に見るための視点とは? 次に、情報の分け方についてですが、単に機械的に分けるのではなく、仮説を立てて特に影響力の大きい要素を優先して分解します。また、同じ状況に対して複数の観点から分解することも重要です。ある一つの視点だけでは状況を完全に把握できないことがあるため、他の視点も試すことが肝要です。 問題箇所を特定する方法は? さらに、MECE(Mutually Exclusive, Collectively Exhaustive)を意識して分解することで、問題箇所の特定を助けます。目的を明確にし、わかりやすい形で層別、変数、プロセスに分解すると良いでしょう。また、ロジックツリーを使って、仮説を立てた上でインパクトの大きい要因から切り口を考えます。この過程でアイデアを広げる際にもロジックツリーは有用です。 入学者分析で何が得られる? 具体的な応用として、入学生徒の性別、学力、地域、求めるものなどの傾向を分析することが挙げられます。これにより、入試広報活動を改善し、学校が求める生徒像に合致する生徒を獲得することができます。また、普段から数字をグラフ化する習慣をつけ、ロジックツリーなどを利用して考えを図式化することも有効で、完璧さを追い求めるよりも、実践と反復練習を重視することが大切です。

デザイン思考入門

デザイン思考で顧客価値を最大化する方法

デザイン思考をどう活かす? デザイン思考には、共感、課題設定、発想、試作、テストのステップがあり、これを非線形に繰り返すことが重要だと学びました。この思考をビジネスに活かすためには、顧客やユーザーの行動を観察し、彼らの体験価値を最大化することが大切です。最近学んだカスタマージャーニーでも、ペルソナを細かく設定することが、サービスやプロダクト、戦略を考える上で重要だとされており、これがデザイン思考と通じると感じました。 学びを深めるステップは? 学びにおいて大切なこととして、1.言語化、2.教訓化、3.自分化が挙げられ、これが特に印象に残りました。私は考えを言葉にするのが苦手なので、まず書いてみて、次に発言し、さらに伝わりやすくするステップを踏んでいければ良いと思っています。 システム開発の目的を再確認 現在、私は営業系のシステムを開発・管理・運用する部署に所属しており、社内の営業部門がメインの顧客です。これまで、ITやシステムに慣れていないユーザーをターゲットに、使いやすさを重視した設計を行ってきました。しかし、講義を通じて、システム開発の本来の目的は効率化や売上向上を図ることにあると考え直しました。ターゲット設定を見直し、本来の目的達成のための設計をもっと重視すべきかもしれないと感じました。 顧客理解に基づく設計とは? システム開発においては、インターフェイスの使いやすさに過度に拘らず、データの意味を可視化し、顧客理解や戦略策定を実現するための設計に焦点を当てる必要があります。既存のシステムについても、ユーザー目線でその利用価値を最大化できるかを考え、ユーザーからのフィードバックを積極的に取り入れる姿勢が大切です。

クリティカルシンキング入門

データ分析で見つける新しい景色

データ分析の必要性を再認識 データの工夫や分析の大切さを改めて実感しました。バスケットボールの統計表が特に印象的で、私には馴染みのない分野でしたが、その表をどのように分解し、求める分析結果を導き出すかが想像できませんでした。しかし、講師の資料で〇と●に書き換えられた際、印象が全く異なり、勝敗バランスがはっきりと見えるようになりました。まさに「こういうことなんだ」と感じる瞬間でした。 多角的なデータ再検討の意義 これまで蓄積してきたデータを、曜日別・フロア別・月別・四半期別など様々な視点で再検討しました。また、資料の受け手や質問内容に応じて、それに適した成果物を作成していくことが重要だと思いました。 具体的なデータ分析の取り組み 具体的には、以下のデータを分析し、それぞれの利用率や売り上げ、クレーム、排出量、計画、比較、問い合わせ件数などについて報告します。 - オフィス全体利用率 - フロア内利用率 - カフェテリアのメニュー売り上げ - 空調クレーム - ゴミ排出量 - 社内アナウンスコンテンツ計画 - 全国各拠点比較 - メールセンターの搬出入 - 社内問い合わせ窓口件数 イシューを意識したアクション これらのレポートは各担当者から毎月提示されます。また、問題点があれば相談に来てもらうこともあります。その際には、「イシュー」を忘れずに次のアクションに進むよう、頭の体操を常にしておきたいと思います。 経営層との対話をどう深める? 今まで経営層と話す際、緊張が先立って「うなづいて終わる」ことが多かったのですが、今後は緊張しつつも「彼らの視座から何を見ているのか」を理解し、アクションにつなげていきたいと思います。

クリティカルシンキング入門

データ分析で「全体像」を掴む技術

全体像はどう描く? データ分析において、状況を明確にするために分解が重要だと改めて感じました。まずは全体像を定義し、その上でデータを鵜呑みにせず可視化することが大切です。これまでの分析ではグラフを十分に活用してこなかったため、今後は積極的に取り入れたいと思います。比率計算を行うことは基本として、これまでの実践が正しかったと確認できた点は良かったです。 どの視点が大切? 分析する際、単に機械的に分けるのではなく、BtoBビジネスでの分析環境を踏まえて、年齢層や学生かどうかといった視点を考慮することが重要です。特徴的な傾向が見えない場合でも、それ自体に価値があることを意識し、様々な切り口から分析を試みることが大切です。こうしたアプローチを通じて、データ分析の精度を上げていきたいと思っています。 仮説の真実は? 私は頻繁にデータ分析を行う立場にいますので、全体を改めて定義し、グラフを駆使しながら多角的にデータを分解してみることに挑戦したいと考えています。また、特定の仮説が正しいか検証するためにも、多様な切り口での分析を継続して行いたいです。現在の業務改善プロジェクトで実践している「プロセス分解」にも、さらに効率的に活用できる方法を追求していきます。 過去と今を比べる? そこで、過去のプロジェクトレビューを計画しています。以前取り組んだ案件のデータを利用し、当時と最近の学びを基にした分析を比較し、効率や分解の質を評価したいと考えています。結論が変わることはないと思いますが、分析時間や分解の質など他に計測できる点を比較し、効率化の可能性を探りたいと思います。適用可能なプロセス分解手法は、今後も活用していくつもりです。

「データ × 利用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right