データ・アナリティクス入門

ABテストで広がる検討の可能性

ABテストの活用法は? 原因を探るツールとしてご紹介いただいたABテストについて、既に知識はあったものの、問題解決プロセスにおける位置づけと合わせて理解できたことで、具体的な利用シーンがイメージしやすくなりました。体系的に整理することは、自身で活用する際や他者に説明する際にも有効だと感じています。 業務検討テンプレートは? 業務に取り入れるためには、具体的な状況を想定し、各パターンごとに検討方法のテンプレートを構築しておく必要があると実感しました。こうしたテンプレートを整備することで、検討に着手するスピードが速まり、業務の効率化にもつながると考えています。 どの要素が影響する? たとえば、よくあるデータ分析の依頼を想定し、受注額に影響を与える要素を洗い出して、その関連性を検証するパターンをいくつか作成しようと思います。これにより、関係性の強い要素から受注額を予測する、といった検討がよりスムーズに進むと期待しています。

データ・アナリティクス入門

実務に効く!仮説検証で問題解決

プロセスは何が鍵? このたびの学びでは、課題解決のプロセス「what→where→why→how」を通じて、特に原因分析(why)と打ち手の策定(how)の部分に焦点をあてることができました。各段階での具体的な方法が、実際のビジネスシーンにどう結びつくのかを理解できたのが印象的です。 原因はどう掘り下げる? 原因特定の手法として、プロセスを分解することで問題の要因を明確にし、深堀りするアプローチについて学びました。また、A/Bテストを用いる手法では、データの偏りを避けながら分析を行える点が、実務での効果的な検証手法として魅力的に映りました。 仮説はどう立てる? この経験をもとに、今後は仮説を立て、検証を行い、解決策を素早く導き出すサイクルを意識して業務に活かしていきたいと思います。 A/Bテストの知見は? なお、A/Bテストは現場で実際にどの程度利用されているのか、引き続き知見を深めていきたいと感じています。

データ・アナリティクス入門

仮説思考が導く新たな気づき

仮説の多角的検討は? 仮説を立てる際には、まず複数の視点から仮説を検討することが大切です。初めから一つに固執せず、さまざまな切り口で網羅性を意識しながら検討することで、より広い視野を持って分析できます。また、手元にあるデータはそのまま利用するのではなく、仮説を証明するために適切に加工し、都合の良いデータだけでなく反対のデータとも比較することで、説得力のある検証結果が得られると感じました。仮説思考を理解し、活用することは、効果的なデータ分析にとって不可欠です。 売上属人化は懸念される? 一方、現在進めているあるプロジェクトの売上についてですが、担当者の力量によってうまくいっている状態が続いており、それが属人化しているのではないかという疑いがあります。この点については、従来の分析フレームワークである4Pや3C分析を用いて、しっかりと仮説を立てた上で、営業のアクション提案にまで具体的に落とし込んでいければと考えています。

データ・アナリティクス入門

代表値で読み解くデータの真実

どの代表値を選ぶ? 今週の学習では、さまざまな代表値について学びました。平均値には単純平均だけでなく、加重平均、幾何平均、中央値などがあり、分析の目的に応じた適切な選択が必要です。また、データのばらつきを示す標準偏差についても意識するようになりました。製造業の生産部門で用いられる3σなども、この標準偏差の考え方に基づいた手法です。どの指標が何を示すのかを常に意識しながら、代表値やグラフの適切な使用を心がけたいと思います。 単純平均の限界は? これまでのデータ分析では、主に単純平均を利用してきましたが、特異値が存在する場合には単純平均の使用が適さないことも認識していました。そのため、どの数字が最適なのかは必ずしも明確ではありませんでした。今回学んだ加重平均や幾何平均なども併せて活用し、より多角的な分析を進めていきたいと考えています。単純平均以外の代表値を使用する具体的なケースがあれば、ぜひ教えていただきたいです。

アカウンティング入門

わかりやす会計が描く未来

説明はどう伝わる? 初回の講義冒頭で、「アカウンティングは人に分かりやすく説明されるものであり、決して難解で複雑なものではない」という話が非常に印象に残りました。世界中の企業で利用されている以上、誰にとっても明確で理解しやすいはずだと再認識でき、これまで漠然と感じていた取っつきにくさが和らいだように思います。 顧客情報をどう活かす? また、社内で新たなプロジェクトに参加する際、顧客の基本情報をリサーチするために今回の学びを活かしたいと考えています。顧客企業の基本情報や業界背景情報の収集に加え、財務データを正確に読み解いて自分なりの考察を持つことが重要だと思います。 財務分析は何が鍵? さらに、本コースの学びと平行して、クライアント企業の公開情報から直近の財務データを取り出し分析作業を進める予定です。さまざまな業界の企業データを比較し、業界ごとの違いや特徴を検証することで、より深い理解を得たいと思います。

データ・アナリティクス入門

データ分析で見つける!問題解決への道

データ分析はどう始める? 分析は、比較から始まります。問題の定義やデータ分析の目的を明確にし、データの切り口や分析方法、データの効果的な見せ方、さらには仮説を立てる際に有効なビジネスフレームワークを学びました。 手続きの問題はどう捉える? 手続きのデジタル化率を向上させるためのプロモーション施策を考えることを目指し、どこに問題があるのか、どのように解決するのかを段階的に考えていきます。特に、どの手続きでデジタル化の進行が遅れているのかを把握し、その手続きを行った人のデータを深掘りします。 分析で何が分かる? 具体的なステップとしては、最初に手続きが紙ベースかデジタルかを確認し、次に属性データや過去にデジタル手続きを利用した履歴で分類します。それらのデータを用いて、なぜその手続きが利用されたのか、またはなぜ利用されなかったのかを分析することで、より深い理解や示唆を得ることができるでしょう。

クリティカルシンキング入門

データ分析で未来を変える!

学びの意義は? 私の学びについてお伝えします。 数値の発見は何故? 数値データの詳細な分析は重要だと感じました。データの分類手法により異なる結果が得られることを理解しました。また、全体を定義し、仮説を立てることの必要性も痛感しました。具体的には、フレームワークとしてMECEを利用することです。 医療解析の視点は? 医療技術関連に関しては、まず数値化可能なデータを取得し、求めたい結果を明確にしてデータ全体を定義しました。その後、仮説を立て、MECEを活用して分析を進めました。関連性がありそうな分野として、曜日別の忙しさや業務分析にこの手法が使えそうなので試す予定です。 未来の計画はどう? 来週には、自分に関連する業務について計画を立て、その後、今回学んだ手法を活用して曜日別・年齢別の業務分析を行います。その分析結果を振り返り、上司や他の受講生とも共有したいと思っています。

データ・アナリティクス入門

集めて比べる、学びの第一歩

ライブ授業をどう捉える? ライブ授業を通して、分析においては「比較」が非常に重要であると改めて実感しました。限られた情報の中で考察を進めると、様々な視点が生まれる一方で、正確な回答を導き出せない場合もあることが認識できました。 データ準備の確認は? データ分析を実施する際には、まず必要なデータをしっかりと揃えることが不可欠だと学びました。新しいシステムの導入を検討する場合、価格、使用頻度、使用者の経歴、最も利用される時間帯など、複数のデータを準備し、事前に確認すべきポイントを絞り込む必要があります。 集計と比較はどうする? その上で、まずは確実にデータを集め、その後に集めたデータを比較しながら、必要な情報や懸念点を検討していくことが大切です。さらに、足りない情報がないかを意識しながら、新しいシステムに求められる要素を見極めるプロセスの重要性を再認識しました。

データ・アナリティクス入門

ステップで変わる!問題解決力の磨き方

ステップを踏んで考える重要性 分析する際には、大きな点だけに焦点を当てず、ステップを踏んで考えることが重要です。ロジックツリーを活用することで、大きな問題を細分化して俯瞰できます。この手法により、自分だけでなく他の人も問題点を理解しやすくなり、様々な角度から物事を捉えられるようになるでしょう。 「なぜ」にとらわれない方法とは? 「なぜ」に注目しがちですが、大きな問題を細分化して捉えることで、複数の解決策を見つけることが可能です。ビッグデータの中から、どの数字を分析対象にするかを目的から逆算して決定することが必要です。 ビッグデータ分析の始め方 まずは、ビッグデータを理解しましょう。そこから目的を定め、分析すべき数字を選びます。ロジックツリーを利用して異なる方向からのアプローチも試みると、違う視点から全体を見渡し、新たな発見が得られるかもしれません。

クリティカルシンキング入門

多角的視点が拓く不動産分析

多角分析はなぜ? 多角的な分析により、経験則だけに頼らず、実績をもとにした判断の材料を活用する重要性を再認識しました。単一のデータ表に頼るのではなく、異なる角度から作成した複数のデータ表を活用することで、より精度の高い分析が可能になると考えています。 エリア事例の違いは? また、エリアごとに不動産売買の成約事例はさまざまであり、各エリアの成約事例―例えば利回りや金額、融資利用か現金購入かといった要素―の分析には、賃料相場、土地の成約事例、路線価、謄本からの融資金額や融資金利、不動産専用サイトに掲載された情報など、多岐にわたるデータを参考にしていました。 分類で新発見は? これらの情報をエリア別、築年数別、構造別に分類して分析することで、従来の方法では見つけにくかった新たな発見や結果が明らかになるのではないかと感じました。

データ・アナリティクス入門

数字の裏側に広がる発見

データ分析ってどう? 平均だけでなく、分散や標準偏差も組み合わせることで、分析対象を正確に把握し、誤った結論に至らないように努める必要があると感じました。加重平均を適切に利用するほか、ビジュアル化によってデータの様子を把握しやすくすることが、説得力のある分析には重要です。 人事評価はどうなる? また、人事領域では、様々な属性を持つ対象を扱い、各属性の人数が限られている場合もあるため、信頼性のある数値を導き出すには、加重平均や標準偏差の手法が必要不可欠だと考えました。 数値整理のコツは? これまでの講義で学んだ分析対象を要素に分解し整理する手法を活かし、分析したい要素に応じて正しく数値化できる状態を目指します。そのためには、これまで集計した数値に標準偏差を導き出し、改めて整理することが重要だと実感しています。

データ・アナリティクス入門

標準偏差で見えるデータの魔法

標準偏差ってどう理解? バラツキを示す標準偏差について、普段利用する機会が少ないためか、初めて触れる際にはとっつきにくい印象を持ちました。学校での成績に用いられる偏差値とは異なるものなので、具体的な事例に基づいて何度も実際に使ってみることが重要だと感じます。 代表値とバラツキの違いは? 一方、単純平均、加重平均、中央値といった代表値は、日常的に利用しているため理解に苦労することはありません。しかし、バラツキに関してはこれまであまり注目してこなかったため、データの特徴把握のためにも積極的にビジュアル化し、標準偏差を意識して利用したいと思います。 どう実践に活かす? 今回学んだ内容を実践に取り入れる際、代表値だけでなく、標準偏差がどのような場面で効果的に使えるのかを具体的に考えながら業務に活かしていきたいです。
AIコーチング導線バナー

「データ × 利用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right