クリティカルシンキング入門

実践で見つける学びのヒント

データ分解のポイントは? ■データや数字を分解するとは、まず一手間かけて実際に手を動かし、異なる要素を取り入れながら分解・分類することです。案ずるより生むがやすしという言葉どおり、実際に試してみることで気づきが得られます。また、MECEの考え方を取り入れて漏れや重複を防ぎ、粒度を統一することも重要です。さらに、統計的手法そのものは使わなくとも、正の相関・負の相関や偏りといった結果が分解の過程で明らかになると考えられます。 視覚化の工夫は何? ■データの可視化では、仕事に視覚的な刺激を与える工夫が求められます。最適なグラフや色使いを意識すれば、直感的に内容が把握しやすくなります。グラフ作成においては、意図を誘導するのではなく、客観的な視点と根拠に基づいて、見やすさを重視した作り方が大切です。 各指標の活用法は? 自社の業務では、生産性や品質、お客様の満足度アンケートなど、数字で示せる指標が多数存在します。日常的に取得されるデータは社内ルールに従い取り出し・分析されていますが、KPIに基づかないデータはまだ十分に活用されていません。たとえば、音声データは今後、AIによる分類が進み、感情や品質の判断などに役立つ可能性があると感じています。 視覚情報活用の秘訣は? ■視覚情報を活かすため、直感的に判断しやすい図形のバリエーションを増やそうと考えました。普段はワンパターンになりがちだったため、見直す必要があると反省しています。同様に、先に述べた通り、グラフは客観的でわかりやすいものを作ることが重要です。 異なる視点の効果は? ■実際に手を動かす段階では、定型的な並べ方だけでなく、あえて異なる視点からグラフを作成してみることが大切です。失敗や試行錯誤の過程が次の発見につながるとともに、同じ行動様式によるバイアスやパターン化を排除する助けになります。たとえ時間効率を重視しすぎず、KPI項目に重点を置いた原因分析や仮説の構築に取り組む一方で、KPI以外のデータからも意外な傾向が見えてくるかもしれません。 比較で見える新発見は? また、数値やグラフの比較や傾向を通じて、何も見えてこなかった場合でも、その経験を次への一歩として前向きに受け止めることが大切です。多くのお手本を参考にしながら、状況に応じて複数のグラフバリエーションを試作し、今まで活用できなかった手法を検証する機会を持つことが求められます。 数字伝達の秘訣は? 最後に、数字による主張を客観的に伝えるためには、自分が立てた仮説や意見を偏らず筋道立てて説明する工夫が不可欠です。どれだけ簡潔な説明ができるかを追求しつつ、数字やグラフからどのように伝えるか、どんな言葉を用いるかを直感と経験で磨いていくことが、最終的な課題解決につながると考えます。振り返りや反復練習を通じて、基本を定着させ、一過性では終わらない実践を続けていきたいと思います。

デザイン思考入門

デザイン思考で拓く未来のチャンス

デザイン思考の本質とは? デザイン思考とは、単なるアイデア発想の手法にとどまらないものです。「共感」「試行」「発散と収束」を繰り返し、創造的でより良い解決策を見つけるための思考プロセスと理解しました。講義だけでなく、他の受講者との意見交換を通じて特に印象に残った学びや気づきを以下に挙げます。 共感が解決の鍵? まず、共感の重要性です。問題解決の出発点は、ユーザーの立場で深く理解することにあります。本当の課題を考えるためには、観察やインタビューを通じ、その場に顕在化していないニーズを探ることが求められます。 スピード感を持つ試作の重要性 次に、プロトタイピングとフィードバックのスピード感が大切です。素早く試作してフィードバックを受け取りながら改善するアプローチは効果的です。完成形を目指すのではなく、デザイン思考の各フェーズを行きつ戻りつしながら試して学ぶことで、より良い解決策が見えてきます。 発散と収束のバランスは? さらに、発散と収束のバランスも重要です。考えられる選択肢を広げる発散と、最適な解決策を絞る収束を交互に繰り返すことで、創造的な解決策を得ることができます。既存の枠にとらわれず、多様な視点を取り入れることが新しいアイデアを生む鍵となります。 デザイン思考の具体的な応用は? デザイン思考は、特に事業開発や組織開発のコンサルティング業務で応用できると考えました。新規事業開発を支援する際には、顧客ニーズを正確に捉え、適切なプロダクトやサービスを設計する必要があります。ユーザーインタビューや観察を通じて潜在ニーズを引き出し、アイデアのプロトタイピングを迅速に行うことで、事業の方向性が明確になります。 また、組織改革・組織開発を支援する際には、多様な視点から課題を分析することが必要です。エンゲージメント向上策を考える時に、現場の意見を集めながらプロトタイピングを進めることで、実効性の高い施策につながるでしょう。 クライアントへの効果的なアプローチ方法は? クライアントとのワークショップ設計やファシリテーションにも役立ちます。問題を整理し、解決策を共創する際に、発散と収束のバランスを意識すると、より効果的な議論ができます。アイデア創出の段階では多様な視点を採り入れ、その後、アイデアを整理して実行可能なアクションに落とし込むことが有効です。 これを踏まえ、以下のような行動を試してみたいと考えます。まず、クライアントの課題を整理する場面では、共感フェーズを意識し、「なぜ?」を繰り返し問い、本質的な課題を探ります。次に、ワークショップやミーティングをデザイン思考に沿って進め、新規事業のアイデア出しでは発散し、その後収束するという流れを意識します。最後に、プロトタイピングを有効に用い、提案前にシステムモデルを通じて思考を構造化し、フィードバックを得るなどして、提案をより洗練させます。

データ・アナリティクス入門

仮説が生む実践データの魔法

分析の基本は? 分析は比較と捉え、どのようなデータを使い、どのように加工し、何を明らかにするかを明確にすることが大切です。さらに、データ分析に入る前には、目的や仮説をしっかり定める必要があります。基礎として、データの種類、統計手法、可視化などの基本概念を学び、ビジネスにおける意思決定や課題発見のためのデータ活用について理解を深めることが求められます。また、実践的な分析手法やケーススタディを通じ、具体的な応用方法を身につけることも重要です。 学びの全体像は? 全体的に、学習の振り返りは非常に明確で体系的でした。データ分析の基本から実践まで幅広く理解されている点は印象的で、今後は具体的な状況での活用例を考えることで、さらに効果的な応用ができると感じます。 活用のヒントは? さらに思考を深めるため、ご自身の業務や日常生活において、今回学んだデータ分析の知識をどのように活用できるか、具体的な場面を想定してみてください。また、データ分析における仮説の立て方について、どのように仮説を形成すると効果的か、具体的に検討してみることをお勧めします。 適用場面って何? 最後に、データを活用する場面を具体的にイメージし、その適用方法を探求してみてください。今後のさらなる飛躍に向けて、引き続き努力を重ねてください。 仮説検証の流れは? たとえば、仮説思考を鍛えるために、ビジネス課題に対して「仮説➣検証➣改善策」というフレームワークを活用することで、原因分析や改善策の構築がスムーズに進むでしょう。また、過去のデータと比較しながらKPIの設定や顧客データの活用を検討し、現在の状況の妥当性を検証することも大切です。 スキル向上は? 今後強化したいスキルとしては、まず論理的思考力を向上させるため、データリテラシーを高め、データの種類や特性を理解して適切な活用方法を判断することが挙げられます。さらに、批判的思考力を養い、データの信頼性やバイアスを見極めながら、より効果的な意思決定を目指してください。また、仮説思考を活用してビジネス課題に対する仮説を立て、実際のデータ分析で検証する実践力も重要です。 フレーム活用は? ビジネス・フレームワークの理解も不可欠です。データをもとに最適なKPIを設計し、事業の進捗を正確に測定・評価すること、そして構造的なフレームワークを実践することで、より整理された分析が可能になります。市場や競合、自社の状況を把握するため、さまざまな分析手法を積極的に活用していきましょう。 伝え方はどう? また、ヒューマンスキルの向上も重要です。データストーリーテリングによって、分析結果をメンバーにわかりやすく伝え、意思決定に繋げる技術を磨くとともに、組織全体でデータに基づいた意思決定ができる文化の醸成に努めることが求められます。

マーケティング入門

顧客視点で競争優位性を再発見

何を学んだの? GAiLや各動画を視聴して、次の4点を学びました。 顧客はなぜ必要? まず、どれだけ優れた商品やサービスを開発しても、それを価値と認めて購入する顧客が必要条件を満たさなければビジネスは成立しません。また、多くの場合、競合他社の商品やサービスが存在する、または将来的に現れることが予想されるため、ビジネスを継続することは容易ではありません。 魅力は何? そのような中、顧客から選ばれ続けるためには、競合他社のものと比較して自社の商品の強みを一層魅力的に見せることが重要です。そのためには、複数の提供価値を組み合わせ、独自性と優位性を持つ価値として再定義し、顧客に訴求することが求められます。このためのツールとしてポジショニングマップが役立ちます。 市場はどう捉える? さらに、ポジショニングの再定義する過程で顧客の使用イメージを想像し、今までにない用途を思いつくことができれば、商品やサービスを改変することなく新たな市場をターゲットにできます。 どのように伝える? ターゲティングとポジショニングが決まれば、ターゲット顧客に自社の商品の強みや価値を最大限に効果的に伝えるために、メッセージの内容や伝達手段、販売チャネル、価格設定を含めた総合的なプロモーション戦略が重要です。この際、提供価値が顧客にとっての魅力として伝わり、認知されて購買につながらなければ意味がありません。 買い手の視点は? WEEK2で学んだこととして、私たちは「売り手」としてだけでなく「買い手」の視点も忘れずに、常に顧客視点で考え、想像力を発揮し、アウトプットすることが習慣となることが大切だと改めて感じました。 計画の秘訣は? 次期中期事業計画の策定時には、この学びを活用したいと思います。「なぜ今顧客から自社のサービスを選んでいただけているのか」、「どうすれば今後も選び続けていただけるか」という点について、ポジショニングマップを使って整理するつもりです。 誰がターゲット? 特定の顧客に向けたサービス展開という観点から、まずセグメンテーションとターゲティングを一旦置くことにしました。自社サービスの強みや提供価値を複数挙げ、それをポジショニングの軸としてポジショニングマップを作成します。そして、なぜ自社サービスが選ばれているのか、顧客視点で顧客ニーズを考え抜きます。 強みの伝え方は? 仮定した顧客ニーズに対して、本当に競争優位性があるのかを明確化するまでポジショニングを再検討します。最終的な自社サービスの競争優位性が固まったら、その強みや提供価値の使用イメージを想像し、他のターゲットが考えられるか検討します。この競争優位性がどのように鮮明にターゲット顧客に伝わるかを考え、総合的なプロモーション戦略を構築します。

データ・アナリティクス入門

データ分析で学ぶ問題解決の極意

データ分析の基本は比較すること? データ分析を行う際、常に重要とされるのは、次の三点の意識です。 まず、分析の基本は比較です。データの意味を正しく理解するためには、異なる要素を比較することが不可欠です。単独の数値だけでは判断が難しく、過去のデータや他の指標と比較して初めて有益な示唆を得られます。 分析の目的をどう明確にする? 次に、分析の目的を明確にすることです。なぜデータを分析するのか、その目的を常に意識することが重要です。目的が不明確だと、必要なデータを見落としたり、無駄な分析を行ったりする恐れがあります。 仮説の整理で見失わないために? 最後に、分析の前に目的と仮説を整理することです。データを集める前に、「何を明らかにしたいのか」「どのような仮説を検証するのか」を整理しておく必要があります。これが曖昧だと、分析の方向性を見失い、効果的な意思決定につながらない可能性があります。 これらのポイントを意識することで、より実践的で価値のあるデータ分析が可能となります。 依頼主の目的をどうヒアリングする? 現在の業務では、データ分析の依頼を受けることが多いですが、依頼主の目的や仮説を確認しないままデータ加工に進むことがあります。さらに、依頼主自身が目的や仮説を明確にできていないケースも少なくありません。その結果、分析が本来の目的に合致せず、期待した価値を生まないデータとなってしまうことがあります。 これらの課題を解決するため、データ分析に着手する前に、依頼の背景や目的、仮説を丁寧にヒアリングし、必要に応じて適切な方向性を示すことを目指します。単なるデータ処理のスキルだけでなく、適切な問いを立て、論理的に考える力が必要です。本講座を通じて、そうしたスキルや思考法を習得し、より価値のあるデータ分析を目指していきます。 継続的な改善が価値を生む? 依頼主の目的や仮説を十分に確認しないまま進むことを防ぐため、以下の行動を実践しています。まず、依頼時のヒアリングを徹底します。「何のための分析か」「どのような意思決定につなげたいのか」を明確にする質問を行います。目的や仮説が曖昧な場合は、具体的な事例を挙げながら整理をサポートします。 次に、仮説の検証を意識したデータ設計を行い、目的・仮説に沿ったデータの選定・加工・分析の方針を明確にします。必要に応じて事前に簡単なデータの傾向を確認し、分析の方向性が適切かを判断します。 最後に、分析結果に適切なメッセージを添えます。「このデータから何が言えるのか」「どのような意思決定に役立つのか」を言語化し、依頼主が結果を適切に解釈できるよう、シンプルで分かりやすい可視化や説明を心がけます。 これらを継続的に実践し、依頼主にとって本当に価値のあるデータ分析を行えるよう努めています。

データ・アナリティクス入門

仮説で切り拓く思考と成長の道

仮説はどう捉える? 仮説は論点に対する仮の答えであり、そこから検証や分析を進める出発点といえます。仮説には「結論の仮説」と「問題解決の仮説」という2種類があり、前者は最終的な結論の方向性を先に立て、そこから逆算して必要な情報を集めて検証を進めるものです。一方、後者は起きている問題に対して「なぜそうなっているのか」「どうすれば改善できるか」を探るプロセスであり、What、Where、Why、Howといった問題解決の手法を意識して仮説を立てます。 仮説はどう整理? これまでは仮説を一括りで捉えていましたが、今後はどちらのタイプの仮説に取り組んでいるのかを明確に意識して使い分けたいと感じています。また、複数の仮説を立てることで決め打ちを避け、柔軟な視点を保つことができます。加えて、仮説同士の網羅性を意識し、カテゴリやプロセスといった異なる切り口からの検討は、より構造的なアプローチにつながります。こうした取り組みが、課題設定力の向上にも寄与すると考えています。 どんな経験が役立つ? これまでの業務経験では、「結論の仮説」と「問題解決の仮説」の両方に取り組む機会がありました。特に施策の立案など、結論を先に想定する場面ではフレームや構造を活用し、全体像を俯瞰したうえで結論から逆算して仮説を立てることが効果的だと感じています。一方、日々の業務でデータを確認し、問題を発見・提示する機会が増える中、What/Where/Why/Howのプロセスを意識した仮説立案が、原因特定から改善策の検討までの一連の流れを円滑に進める助けとなっています。 仮説の質はどう上がる? また、仮説の質を高めるためには、網羅性を意識しながらさまざまな切り口で検討する姿勢が重要です。この取り組みを通じて、本質的な課題設定ができ、より実効性のある打ち手へとつなげることができると実感しています。 学習の効果は何? 今回の学習を通して、「結論の仮説」と「問題解決の仮説」という2種類の仮説が存在することを再認識しました。振り返ると、私は「こうすればうまくいく」という結論の仮説に対してやや苦手意識を持っていたと気づきました。 今後の改善はどう? そこで今後は、まずフレームワークを活用して構造的に考えることに努めます。要素分解を通じて仮説を立てやすくし、思考に型を取り入れることで苦手な結論型の仮説も導き出しやすくする狙いです。また、間違ってもよいという前提で自分なりの仮説を積極的に立てることで、完璧を求めず「とりあえずの仮置き」を実践し、言い切る練習を重ねつつ検証を前提とした思考に慣れていきます。さらに、学んだ知識をそのまま受け入れるのではなく、自身の業務や経験に照らして問い直し、アウトプットや振り返りを通じて知識を深め、実際に使える形に育てる努力を続ける所存です。

データ・アナリティクス入門

クリックの先に見た未来

本当の広告効果は? 今回の学びは大きく三点にまとめられます。まず、広告の効果は単なる表示回数ではなく「クリック率から体験申込率」へとつながる連鎖に着目すべきであるということです。同じ予算でもプラットフォームごとに効率が大きく異なるため、数値を細分化することで本当のボトルネックが明確になります。 クリック改善の謎は? 次に、クリック率が伸び悩む理由を探る際は、「ユーザー層」「クリエイティブ」「枠の特性」といった切り口から仮説を立て、データに基づいて一つずつ検証するプロセスが重要です。単に「若い層に響いていない」とするだけでなく、画像の情報量や広告の配置など具体的な要因に落とし込むことで、より実効性のある施策が打てると実感しました。 A/Bテストの効果は? さらに、改善策の有効性は同一条件下でのA/Bテストによって検証する必要があります。新旧のデザインを同期間にランダムに配信し、外部要因を統制した上で差分を測定することで、最短かつ確実な改善サイクルが構築できると感じました。データの分解、仮説の立案、対照実験という流れが、マーケティング施策の精度とスピードを大きく向上させる鍵です。 報告書改善の道は? 私の業務では従来、広告レポートで単に表示回数や平均クリック率を羅列するだけでしたが、今回の学びを受け、以下の取り組みを実施することにしました。まず、プラットフォーム、クリエイティブ、ユーザー属性別に指標を分解し、クリック率から申込率に至るファネルを可視化するテンプレートを新設します。次に、新旧のクリエイティブを必ず同期間にランダム配信し、A/Bテストによって95%の信頼水準で結果を判定するプロセスを確立します。そして、クリック率が目標に達しない組み合わせについては、「画像の情報量」や「広告の配置」といった具体的な要因でタグ付けし、次回の制作ブリーフに反映させます。これにより、数値の分析から原因の特定、施策実行へのサイクルを迅速に回し、単なる報告書ではなく、改善に直結するレポートを作成することが可能となります。 実施計画に疑問は? 具体的なスケジュールとしては、まず1週目に全媒体広告にUTMパラメータを付与し、表示、クリック、申込の3段階のデータを収集する計測テンプレートを整備します。次に2週目に、媒体、クリエイティブ、属性別にファネルを自動表示するダッシュボードを実装します。3〜4週目には、画像量やコピーを変更した新クリエイティブを数本作成し、同期間でランダムに配信するA/Bテストを開始します。2か月目に有意差のあるクリエイティブを採用し、低効率なパターンについてはタグ付けしてガイドライン化します。3か月目以降は、毎月数値から原因、施策へのPDCAサイクルを高速に回していく予定です。

戦略思考入門

規模の経済性を超えて、真の競争力を手に入れる方法

戦略的行動をどう実現する? 戦略的な行動をとるためには、古くから存在しビジネスの定石とされる様々な法則やフレームワークを知り、それらの原理や前提条件、例外パターンを含めた本質をきちんと理解し、適切に用いることが必須であるということを学びました。 ビジネスの定石を再確認 WEEK5で取り上げられた「事業経済性」というメカニズムを例に、自らを振り返ると、規模の経済性がそもそも効かない場合や、効くとしても非常に限定的であることに気づきました。そのため、ターゲットを絞りサービスの価値を高めることでネットワークの経済性を活かし、そこで浮いた経営資源を集中投下して経験曲線を活かす。このように、範囲の経済性へつなげることでコスト低減が実現できそうだと感じました。しかし、これまで私はビジネスの定石を「感覚的」に理解していただけだったことに気づきました。 中期経営計画の重要性 変化の激しい時代と業界において、中期経営計画を立てる意味と重要性を再認識しています。次期中期事業計画の策定に向けて、ビジネスの定石を本質的に理解・整理し直し、一年近くの時間を有効に活用したいと思います。 視座と視野を意識した仮説思考 周囲の協力を得ながら、「高い視座と広い視野」「一貫性と整合性」を意識しつつ、不確実な情報の中でもハイサイクルで仮説検証を行う仮説思考でビジネスの定石を適用します。また、実際に適用した結果について関係者と共有し、複数の視点を基に明確な判断基準を持って投資対効果を意識し、比較検討・取捨選択を行っていきます。 事業計画策定の精査ポイント 事業計画の策定にあたり、次のポイントを精査します: - 目指すべきゴールは何か - 現経営資源に何があるのか - 省エネはどこまで追求するのか - ゴールに到達するために「やるべきこと」「やらないこと」は何か - ターゲット顧客は誰か - 自社はターゲット顧客にどのような価値を提供するか - それは本当に顧客が求めているものか - 独自性(強み、差別化ポイント)は何か - 独自性で本当に差別化できているか - 独自性は実現可能か、長期的に競争優位性を持続可能か - 事業経済性で効くものは何か、なぜ効くのか - 他社事例で適用できるものはないか 定石を駆使した事業計画 今回の講座を通じて、3C分析、SWOT分析、バリューチェーン分析、PEST分析、5Forces分析、ポーターの基本戦略、シナリオ・プランニング、VRIO分析、ジョン・コッターの8段階のプロセス、事業経済性など、10個以上の定石を学びました。事業計画を策定するにあたっては、これらの定石を意識しながら一つずつ理解し直し、他社事例を集めて研究しながら適用を進めていきたいと思います。

戦略思考入門

業務改善への学びを深める新たな視点

複雑性の原因は? 現在、私の所属する会社では、複数の事業が並立し、複雑化しています。この状況を「範囲の不経済」として再認識する機会となりました。新規事業を立ち上げるにあたって、社内資源を最大限に活用しようと心掛けていましたが、それがかえって事業の複雑性を増す原因になっていたように感じます。今後は、「既存ビジネスとの資源の共通部分が本当に強みを生むのか」を再度考える必要があると感じています。 業務思考の向上は? 総合演習を通じて、普段の業務に当てはめて考えることのできる観点を学びましたが、実際には業務中に立ち止まって考える余裕が足りませんでした。今後は、自分自身で立ち止まり、思考を深めるべきポイントを明確にすることから始めたいと思います。また、演習時に思い付きで意見を列挙した場合と、フレームワークを活用して検討した場合とでは、回答の整理や網羅性に大きな違いがありました。この違いは業務にも大きく影響するため、情報の整理や思考を深めることを習慣化したいと考えています。 部門調整はどう? また、現在は事業が多様化しており、範囲の不経済が生じている状況です。業務においては、本部間の調整や組織の運営に対処する必要があります。これに対し、まずは個々の本部の意向を一旦脇に置き、会社全体のあるべき姿を客観的に見据えて、他部門との対話や調整を進めていきたいと思います。 ターゲット明確化は? 演習を通じて、ターゲットの明確化が不可欠であることを改めて認識しました。現在、事業全体で共通のターゲット像が描けていないことが課題です。これまでこの問題に対して提言できずにいましたが、学習によって外部環境や内部環境の整理が不足していたことが原因であると理解しました。今後は、行動計画に従って具体的な対策を講じたいと思います。 資源活用を見直す? まず、自部門に限らず他部門も含めたバリューチェーン分析やVRIO分析を行い、会社全体の構造と資源を再評価したいと考えています。これまでの「自社資源を何が何でも活用する」という考えを見直し、共通の資源が本当に強みとなるかを検討することで、真にシナジーが期待できる部分のみを利用するようにして、経済的な効果を生み出す状態を目指します. 議論で成長できる? 加えて、3C分析やSWOT分析を用いて一切の漏れがないよう情報を整理し、ターゲットをどこに設定すべきか、自分の言葉で繰り返し言語化していきます。この学び全体を通じて、言語化の重要性とそれに伴う能力の鍛錬が必要であることに気づきました。したがって、今後のアウトプットについては、必ず上司や同僚と議論し、終わりではなく改善を繰り返す姿勢で取り組んでいきたいと思っています。

戦略思考入門

経済性の本質を深堀りして学ぶ方法

ビジネス法則の理解を深めよう ビジネスの法則を正しく理解し、それを武器にすることは重要だと感じました。「規模の経済」はよく用いられる法則のひとつですが、大量に生産や発注をすれば、一つ当たりのコストが下がるという単純な理解しかしていませんでした。どんな場合でも規模の経済が適用できるわけではなく、固定費と変動費に分解したり、時点を広げて考えたりすることが大切だと学びました。 経済性の種類に注目する 事業経済性とは、何かをするほどコストが下がることを指します。規模の経済、経験効果、範囲の経済、ネットワークの経済、連結の経済などがあります。差別化を理想としていますが、すべての領域でそれを実現するのは難しいため、経済性にも注目する必要があると感じました。この点で、経済性といえば規模の経済とほぼ同義と考えてしまっていましたが、さまざまな経済性に着目することで思考の幅を広げていきたいと思います。 範囲の経済性を活かす方法は? 範囲の経済性については、すでに持っている資源を他の事業や領域でも活用し、コスト削減を図ることが大切です。 習熟効果においては、ナレッジの蓄積や学習に熱心な組織は習熟効果が高いことが分かりました。市場成長期に高いシェアを獲得し、競合より早く多くの経験を積むことで、先行して習熟効果が得られます。しかし、自社ではマーケティング部門ではナレッジ蓄積の意識がまだまだ低い状態です。他企業の話を聞くと、習熟効果を意識している企業も多く、自社の改善点を見つけるきっかけになりました。 経済性と差別化のバランスとは? 経済性の追求(特に規模の経済)は差別化できない企業の逃げのアクションという印象が強かったですが、差別化は理想的なものではあるものの、すべてを実現するのは難しいと理解しました。そのため、経済性との両立が必要であると再認識しました。 特に範囲の経済については、すでに持っている資源を他の事業や領域でも活用することが重要です。例えば、組織内でのナレッジ共有や連携を強化することによって、範囲の経済メカニズムを働かせることができます。最近、事業部制を導入したところで範囲の不経済が生じていますが、商品部門との人事異動や情報連携強化により、範囲の経済が実現できています。 組織内での法則の活用法は? チーム内に法則を用いて説明する機会がよくありますが、改めて本質を調べてから活用し、自分に都合よく説明しないように気をつけます。 また、来週の議論に向けて、範囲の経済について深く考え、自チームのみならず部門全体にとってのメリットを追求していきたいです。習熟効果についても他企業のナレッジ蓄積や学習の情報収集を行い、あるべき姿を考えていきます。

リーダーシップ・キャリアビジョン入門

リーダーシップで成長する秘訣とは

計画チェックと柔軟対応は? 計画の実行段階では、プロセスが予定どおり進んでいるか、また期待された結果が出ているかを定期的にチェックし、問題がない場合は状況を維持します。しかし、状況が変化した場合には、リーダーとして適切に介入が必要です。過度の干渉は避けるべきですが、状況に応じて柔軟な対応が求められます。 不測の事態への対処法は? 不測の事態が発生した場合、リーダーは結果に対する責任を負うことになります。まずは事態を収拾し、その後、問題の構造を把握して具体的な改善策を策定します。その際、個人を追及するようなことは避けるべきです。 成功と失敗の振り返りをどうする? 振り返りは習慣化することが重要です。失敗にばかり目を向けず、成功した点も評価します。評価基準を明確にし、メンバー自身に自己評価を言葉にしてもらいます。改善は具体的な行動計画に落とし込みます。 モチベーションを高めるには? モチベーションを高めるためには、日常の信頼が基本です。個々人の違いを理解し、適切に対応することが大切です。以下のフレームワークを活用すると効果的です。まず、X理論とY理論ではX理論が人間は怠け者であるとの考えを、Y理論では目標に向かって積極的に行動するとの考えを示しています。マズローの欲求5段階説では、生理的欲求、安全欲求、社会的欲求、承認欲求、自己実現欲求のどの段階がモチベーションの源となっているかを重視します。ハーズバーグの動機付け衛生理論では、動機付け要因と衛生要因を区別し、どちらが満たされていないかを判断します。 実務での実践方法は? 実務で特に有用なのは以下の2点です。 1. 相手のモチベーションを高めるコミュニケーション あらゆる場面で相手のモチベーションを高めるよう心がけます。メールの返事が遅い、または期待と異なる返事が来る場合でも、相手のモチベーションを高める姿勢を取ることで改善が図れるかもしれません。 2. 振り返りを行う際には、相手に考えてもらう問いかけを行います。 特にジュニアのメンバーとの振り返りでは、自分の経験談を押し付けず、相手自身がどのように感じ、今後に生かすかを考えさせるような対話を心がけます。自分自身の振り返りでも、昨年の経験を生かし、タイムラインの設定に注意を払って計画を立てることが有効です。 相手のモチベーションを高める際には、共感や理解を示し、良いと思った点を積極的にフィードバックします。自身のモチベーションを保つためには、自分がチームや会社に貢献できているかを意識し、その価値を自分で認めることが大切です。また、プロジェクトを継続的に見直しながら改善し、より具体的な行動計画に結びつけることが求められます。

データ・アナリティクス入門

問題解決スキルでデジタル広告を最適化

原因分析の重要性を知る 問題解決ステップにおける原因分析(Why)、Howの立て方について学びました。 原因を探るためのポイントは次の二つです。一つ目は、結果にいたるまでのプロセスを分解し、どのプロセスに問題があるか特定すること。二つ目は、解決策を決め打ちにせず、複数の選択肢を洗い出し、それを重みづけして評価・選択することです。 総合演習で何を学ぶ? 総合演習では、問題解決プロセス全体を経験しました。この過程を通じて、「問題が発生すると、解決策から考えてしまう」「仮説めいた持論を展開する」「それらしいデータに飛びつく」という思考のクセを極力排除し、問題解決ステップに沿って検討を進める方法を学びました。 実務での学びの応用は? 出版デジタルメディアにおけるタイアップ広告販売の仕事においても、この学びを活かせる場面がいくつかあります。 まず、タイアップ広告の進行中の検証や効果測定です。例えば、PVや再生数などの指標が当初の予測よりも悪い場合、従来はコンテンツの内容にのみ着目していましたが、今後はプロセスに分解することで、原因箇所を判断できるようになります。 次に、ABテストです。記事コンテンツは校了後に修正しないのが基本ですが、タイトルやサムネイル画像などの要素はテスト形式にすることができるかもしれません。また、SNSでUPするコンテンツでもテストが可能かもしれないと感じました。 成長戦略における問題解決 また、自社メディアの成長戦略策定においても、他部署と来期の戦略を立てている最中で、問題解決ステップを基にした議論がなく、Howばかりで決め打ちの議論になりがちです。そのため、効果検証がしづらい状況でした。そこで、自分が問題解決ステップのWhat、Where、Whyを整理し、メンバーに提案してみようと思います。納得してもらえるかはわかりませんが、WhyからHowの複数の選択肢を全員で洗い出してみたいです。 次に取るべき具体的アクションは? 具体的なアクションとしては、以下の内容を計画しています。 まず、途中検証がすぐにできるよう、プロセス分解を先に作成します。また、外部サポート企業にプロセス分解を依頼する予定です。 次に、サイトとSNSでABテストにかけると効果的な項目を洗い出し、社内に提案します。これについても、どの項目を抑えるとサイト成長の観点で効果的か外部サポート企業に確認します。 最後に、自社メディアの成長戦略策定に向けて、問題解決ステップに沿って自社サイトを分析しておくことです。これには、今週予定されているミーティングに向けてGA4を可能な限り分析することも含まれます。

「本 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right