データ・アナリティクス入門

対概念で拓く経営戦略の新視点

対概念の意義は何? 対概念とは、ある概念に対して反対または対照的な意味を持つ別の概念を考えることで、物事をより明確に理解し議論の幅を広げる手法です。問題解決に取り組む際は、原因をプロセスに分解する方法、複数の解決策を根拠をもって絞り込む視点、A/Bテスト方式を活用した実践検証、そしてデータ分析を組み合わせた段階的な課題抽出と検証の流れが重要となります。 M&Aリスクはどう考える? 例えば、M&A案件のリスク評価と意思決定においては、ポジティブな要素であるシナジー効果と、ネガティブな統合リスクを対概念として捉え、財務リスク、組織文化、オペレーションといった要因に分解して考えます。各リスク要因を定量化することで、M&A後の成功確率を高めるためのより正確な判断が可能となります。 統合戦略はどれが最適? また、企業の経営戦略策定、特にM&A後の統合戦略においては、段階的統合と急速統合という二つのアプローチを検討し、A/Bテスト方式でそれぞれの効果を比較します。統合プロセスの進捗データや業績、従業員満足度といった具体的な指標をもとに、どちらの戦略がより良い成果を生むかを実証的に評価していきます。 リスク評価の秘訣は? さらに、リスク評価のためのフレームワーク作成では、過去の成功事例や失敗事例をデータベース化し、財務、組織文化、オペレーション、市場環境といった指標を基にリスク評価シートを作成します。これにより、各案件ごとのリスクが客観的に評価され、精度の高い投資判断を導き出すことが期待されます。 定量化結果は何? 続いて、データ分析を用いた定量化では、財務データや従業員エンゲージメント、企業文化の適合度を測る指標を設定し、回帰分析や相関分析を活用します。特に、文化の不一致が従業員の離職率に与える影響などを数値化することで、過去のM&Aデータから成功パターンや失敗パターンを明らかにし、これを次の意思決定に生かすことが可能となります。 結果の信頼はどう確保? 対概念とA/Bテストを通じて物事を深く理解しようとする姿勢は非常に評価できます。今後は、どのような状況で対概念を活用するのが効果的か、またA/Bテストで得られた結果の信頼性をどのように確保していくかといった点について、さらに思考を深めながら実践につなげていくことが求められます。

戦略思考入門

優先順位で達成するキャリア成功の秘訣

優先順位の付け方とは? 日々の業務において、優先順位をつけて取り組むことは重要です。自分が積極的に学ぶことで将来、自分や自社に還元される効果が高いものは、時間がかかっても取り組む価値があります。一方で、効果が低く必要性も低いと感じられるものについては、上司に相談することも一つの方法です。 新規事業の利益予測はどうする? 新規事業案件に関しては、立ち上げる際にその案件がもたらし得る利益や必要な資源を最高、標準、最低のケースで予測することが重要です。実際に市場に出して結果を見たうえで、課題が出てきた場合は、これらの情報に基づき取捨選択を行いましょう。 将来の業務改善方法は? 将来の業務については、各事業所ごとに業績やROIを確認し、製造・販売戦略を改善する必要があります。人的資本の投資優先順位には特に意識を払い、限られたリソースを最大限に活用する工夫が求められます。 キャリア形成のための計画は? キャリア形成の観点からは、3年後や5年後にどのような姿になっていたいかを基に、現在の業務がそのルートに合っているかを判断することが大切です。人事との面談を通じて、必要なスキルや経験を明確化し、具体的な行動計画を立てることが求められます。 効率的な日々の業務管理法は? 日々の業務では、業務をリスト化し、自分や自社への効果を基に優先順位を決めることで効率的に取り組むことができます。例えば、提出期限のある資料や議事録の作成、出張準備、自己研鑽など、それぞれの重要度や緊急度に基づき時間を割り当てると良いでしょう。 拠点改善のための戦略は? 拠点ごとの売上高や製品割合、各製品の利益率に基づき、拠点への注力の仕方や販売戦略を決定することも重要です。中期経営計画に基づき、拠点ごとの改善を進めることで、実現に向けて具体的なステップを踏むことができます。 キャリア目標の具体化はどう行う? キャリアを見据えた行動として、3年後には海外拠点の管理、5年後には駐在という目標を持ち、その実現のために必要なスキルや経験をリスト化し、具体的な行動計画を立てましょう。例えば、財務経験が必要であれば人事に相談し、経営企画業務にもっと時間をかけるなど、現在の業務を見直すことが重要です。常に自分の行動がどのような意味を持つのかを意識しながら、積極的に取り組みましょう。

データ・アナリティクス入門

データ分析で解決策を見つける旅

問題解決とデータ分析の関連性とは? 今週の学習を通じて、問題解決のプロセスとデータ分析の関連性について学ぶことができました。特に印象に残ったポイントは、問題解決のステップを「What(現状把握)」、「Where(問題特定)」、「Why(原因究明)」、「How(対策検討)」という形で整理するアプローチです。このステップを行き来しながら問題を深掘りしていく方法は、データ分析で何から取り組んで良いかわからない時に役立つ道筋を示してくれるため、非常に効果的だと感じました。 STARフレームワークの有効性は? 現状把握においては、問題を「あるべき姿」と「現状」のギャップと捉えることが重要です。このギャップを、STAR(Situation:状況、Target:あるべき姿、Action:行動、Result:結果)フレームワークを活用することで、より具体的に問題解決のプロセスをイメージしやすくなります。また、問題を因数分解することで、要素を細分化し問題のある箇所を特定でき、優先的に対応すべきところが明確になります。逆に、不要な範囲を明確にすることで、効率的に問題解決に繋がることも新たな発見でした。 ロジックツリーとMECEの効果は? 問題の因数分解にはロジックツリーが効果的で、層別分解や変数分解(掛け算)の2種類を問題に応じて使い分けることで、より効果的に分析が行えます。MECEの概念も重要で、「抜け漏れ、ダブりなく」問題を捉えることが重要です。 データ分析の具体的な活用例は? 今後、学んだ内容は患者の受診動向調査に活用できると考えています。どのような患者が、どの診療科をどのくらいの頻度で受診しているのかを分析することで、患者のニーズや医療機関の利用状況を把握できます。ただし、実際に活用するためには、現在のデータが分析に必要な要素を網羅しているかを確認する必要があります。 分析の目的は何か? データ分析の目的は、大きく分けて二つです。まず一つ目は患者サービスの向上で、ニーズに合った医療サービスを提供するために分析結果を役立てます。二つ目は病院経営の改善や効率化で、患者の利用状況を分析することで、リソースの最適化が図れます。さらに、定量分析だけでなく定性分析を利用することで、サービス提供時の運用上の問題を解決する可能性もあります。

クリティカルシンキング入門

イシューを意識して業務改善を実践するコツ

問いから始める意義とは? 仕事や業務の成果を上げるために、イシュー(問い)に基づいたアプローチが非常に重要だと感じました。以下に実際の感想文を編集したものを記載します。 まずは、問いから始めることが大切です。自分が問題に直面した際、最初に何を問うのかを明確に意識し、その問いを組織全体で共有することが肝要です。問いは具体的かつ一義的に理解できる形にし、常にその問いを意識して進めることで、ぶれない対策を講じることができます。 データから課題を見極めるには? 実際に、自身の業務において成果が出ないときや行き詰まりを感じたときには、データを分解し、その中から最も重要な課題を見極めることが必要です。この過程を通じて、適切なイシューを特定し、その改善策を多く出し、最適なものに絞り込むことが有効です。 組織全体で共通イシューを議論する重要性 また、組織運営においてもイシューに焦点を当てることが重要です。特に、KPIの設定や業務効率化、新人の教育などにおいて、多くの課題があるため、組織全体でイシューを明確にし、議論する機会を設けることが求められます。 MTGをどう改善する? 次に、MTG(会議)の改善についてです。現状では、自他部署とのMTGが報告と意見交換で終わることが多いですが、事前にイシューを特定し、議論の焦点にすることで、MTGをより意義あるものにし、業務改善につなげることができます。 さらに、自分自身の業務においても、行き詰ったときや結果が出ないときには、状況やデータを分析し、イシューを特定して改善策を考える習慣をつけることが大切です。 定例MTGでのイシュー活用法 具体的には、自組織の定例MTGでイシューを提示し、議論の対象とすること、都度、事前に上長にネゴシエートし、組織内に告知してメンバーに考えてもらっておくことが必要です。また、マーケティングや営業のキャンペーン結果をフィードバックする際にも、結果の分析で見えてきたイシューを特定し、事前に議論の機会を探ると良いでしょう。日々の業務においても、週1回以上、イシューを特定して改善策を考える習慣をつけるようにします。 以上の点を意識しながら、日々の業務や組織の運営に取り組むことで、より効率的で効果的な成果が得られることを期待しています。

戦略思考入門

戦略的思考で最速ゴールへの道

戦略思考を理解できた? Week.01からWeek.04までを通じて、「戦略的思考」という概念を全体的に理解することができました。この学びを通じて、「戦略的思考」とは、以下のようなプロセスであることが分かりました。まず、適切なゴールを設定し、そこから現在地までの道のりを描きます。そして、その道のりを可能な限り最短で到達するために、取捨選択の重要性が求められます。 情報整理って大事? 目的や目標を達成するためには、まず情報を整理し分析してから、基本戦略として差別化を図ることが求められます。そして、実行に移す際には、取捨選択が必要となり、場合によっては戦略の検討段階で捨てることによるメリットを考えることもできます。このプロセスにおいて、取捨選択の実施は必ずしも一定の順番で行われるわけではなく、場合によっては前後することもあります。 慎重な取捨選択は? 取捨選択の際に重視するべきポイントとして、顧客の利便性を高めるために敢えて捨てることもあり得ます。また、常に最適解を求め、「惰性」に流されないための思考停止を避けることも重要です。さらに、専門家に任せるという観点から外注やアウトソーシングを検討することも一つの手段です。 優先順位はどう付ける? 優先順位を付ける際のポイントですが、特に資源が限られている場合には、効用の最大化を念頭に置いた判断が求められます。ここで役立つのが、無差別曲線の概念です。また、異なる要素が互いに打ち消し合う場合には、注力すべきポイントを明確にし、メリハリのある投資を検討する必要があります。 業務を見直すには? 実際の業務においては、取捨選択の際のポイントである「惰性」に流されないことや、「餅は餅屋に任せる」という戦術を活かすことができると考えています。例えば、日々の業務を振り返り、目的や目標に沿って改善すべき点があると感じた場合、これを行動に移していきたいと思います。また、専門外の業務に過度に深入りせず、適切に専門家に任せることで、最速でゴールに到達するための提案を行うことが可能です。 学びをどう活かす? これらの学びを活かし、目的達成に向けた適切な取捨選択と効果的な優先順位付けを実行に移し、より良い成果を目指していきたいと感じています。

戦略思考入門

視座を高め、課題を多角的に捉える転機

戦略思考とは何か? 戦略思考とは、「物事の本質を見極め、目標を効果的に達成するためにシステマチックに考える」ことを指します。これには、大局観を持ち、情報をバランスよく収集・分析することが求められます。この広い視点での情報収集にはフレームワークが役立ちます。フレームワークを活用することで重要なポイントを包括的に捉え、広範囲で情報を整理することができます。また、異なるフレームワークを使うことで、さまざまな切り口から情報を収集でき、問題を網羅的に捉えるには、それぞれの整合性とバランスも重要です。 問題を話し合う際の注意点は? 問題について話し合う際の注意点としては、以下の三点が挙げられます。第一に、経営者視点で考えること。第二に、ジレンマを過度に恐れないこと。第三に、他者の意見にしっかり耳を傾けることです。 全社視点の重要性は? 全社的な視点で捉えた場合、自分の部署の仕事にはさまざまな意味合いがあります。これには、新規顧客の獲得、顧客の囲い込み、安全で安心なお買い物の提供、商品のプレゼンテーションの場の提供、そして低価格の実現といったものがあります。特に、コストの削減は常に重要な課題です。コスト、品質、納期の三つの要素の均衡を保ちながら業務を進める必要があります。 海外業務移行の課題は? 現在、私の部署では海外現地法人への業務移行に取り組んでおり、課題となっています。業務は専門性が高く、各国現地法人のみで完結するのは難しい状況です。売場で使用する陳列什器も種類が多く、日本の業者でも習熟には時間を要します。さらに、CAD操作や建築知識も必要であり、業務の難易度が高いです。 優先課題の明確化はどうする? まずは、高い視座でネックポイントを洗い出すことが重要と感じました。現在の課題が本当に効果的なのか、他に優先すべきことはないのか、多面的な視点で捉えることから始めるべきだと思います。一人で考えていると視野が狭くなるため、自部署のメンバーを巻き込み、取り組むべき課題を明確化していきたいです。 AIチャット活用の可能性は? 適切なフレームワークの選択がまだ難しいため、AIチャットを利用して課題に対する適切なフレームワークを提案してもらうのも良い方法ではないかと考えています。

デザイン思考入門

共感と試行錯誤が未来を創る

どんな発見があった? デザインシンキングを学ぶ中で、私たちがこれまでの「あとおし」の活動で実践してきたことに気づくことができました。特に、デザインシンキングのプロセスが、地域づくりや課題解決に直結しているという点に印象を受けました。例えば「共感」のフェーズでは、地域の声を直接聴き、住民の思いを尊重してきた経験があります。また「問題定義」では、単に課題を洗い出すのではなく、本当に解決すべきことは何かを改めて考える機会となりました。さらに「アイデア創出」では、ワークショップや対話を通じて新しい発想が生まれ、また「プロトタイピング」では、小さな試みを重ねながら改善していく方法が、イベントづくりなどに活かされると感じました。 どう変わる未来? 今回の学びを通して、デザインシンキングという概念が、これまでの活動の意義をより明確にしてくれたと実感しています。今後は、意識的にこのプロセスを取り入れることで、地域が持つ可能性をさらに広げていきたいと思います。 住民とどうつながる? また、デザインシンキングの考え方は、地域の課題を整理し、住民と共に解決策を考える際に非常に効果的です。振興計画の策定やマルシェの企画では、住民の声を丁寧に拾いながら、試行錯誤を重ねるプロセスが役立っています。加えて、移住者と地元住民の交流や自治体との協働において、双方の立場を理解しながら進めることで、より良い関係の構築が可能だと感じました。さらに、SNSで活動のプロセスや工夫を伝えることで、共感を呼び、より多くの人々とのつながりを生む工夫ができると実感しています。 実践策はどう? 具体的には、地域振興計画の策定時には、住民の意見を深く聴くための対話の場を増やし、課題整理を丁寧に行うことが大切です。マルシェでは、新しい企画を小規模に試し、参加者の反応を見ながら改善を重ねる取り組みが効果を発揮します。移住者と地元住民の交流においては、双方のニーズを事前に把握した上で、無理なく関われる場を設計することが求められます。自治体との協働では、関係者との対話を重ね、共通の目的を明確にする努力が必要です。そして、SNS発信においては、単なる活動報告ではなく、プロセスや工夫を伝えることで、共感を誘うストーリー作りが重要だと感じました。

クリティカルシンキング入門

思考整理の具体的手法と実践の大切さを学ぶ

言葉の重要性に気づく 今回大事だと感じたポイントは以下の四点です。 まず、自分の言葉により相手の負担度が変わってしまうこと。これは、サボってはいけないということを意味します。次に、「誰がどうしたか」を明確に伝わりやすい文章にすることが重要です。さらに、結論を支える根拠を複数出すことが求められます。そして、理解を得たい相手が何を気にするかを考え、そのポイントを押さえた根拠を提示することが重要です。 説得力を増すには? また、説得力を増す手法として以下の点を学びました。主語、述語を正しく使うこと、短文で分かりやすくすること、結論を先に述べ根拠をあとにすること、根拠の観点が何であるかを意識すること、そして思いついた根拠の対となるものを考えることです。さらに、根拠を具体化することも重要です。 一方で、自分が根拠として具体化して出した例は根拠として弱いものでした。模範解答のような強い根拠を出すためにはどうすれば良いのかを学ぶ必要があると感じました。 学びをどう活かす? 自分自身の思考の整理やそれを伝える必要がある場合に今回の学びを活用できると思いました。具体的には、上司や部下、関係部署への説明、メールやチャットでの投稿、アプリ開発や販売施策における優先順位決めや実施判断、会議の内容整理などです。 また、具体的な手法をいくつか学べましたので、後輩指導時にも活用していきたいと考えています。 効果的な手法とは? 例えば、検討や整理の際にはピラミッドストラクチャーを作ること、根拠の観点が何かを考えること、また他の強い根拠となる事例がないかを検討することが有効です。説明や伝達の際には、伝えたい内容を最初に述べること、そして主語述語を正しく使うことが効果的です。 実践の大切さを学ぶ 今回の学習については、自分自身でも落とし込めていない点が多く、グループワーク課題を行う前に振り返りが必要だと感じました。実際に行ってみることで根拠の観点がずれていたり、自分の考えを文章にすることで異なる結論が導かれることもありました。これにより実践することの大事さを改めて感じました。そのため、WEEK1の復習として考えたことを文章化し、WEEK3のスキル定着を図りたいと思います。

データ・アナリティクス入門

目的設定から始まる分析の旅

分析前に何を考える? 分析を始める前に、目的や仮説を明確に設定することが基本です。その上で初めて実際の分析に着手できます。データの加工については、AIの活用が効果的ですが、なぜそれを行うのか、また結果がどうであるのかという点については、人の意見が重要だと感じています。これまでの業務では、見やすさやわかりやすさに時間をかけすぎ、本質的な問いに対する回答が十分でなかったと実感しています。 定量データの違いは? 定量データには様々な種類があり、平均値を算出することが有意義な場合とそうでない場合とがあります。直感的には理解できるものの、理由を問われると具体的な説明が難しいこともあります。質的なデータか量的なデータかという違いよりも、それぞれの特徴をしっかりと認識しておくことが大切です。 条件比較、何を見る? データの比較を行う際は、本当に同じ条件で比較できているかどうかを確認する癖を身につける必要があります。なぜ複数のデータを比較するのか、比較から何が読み取れるのかを常に考えることが求められます。例えば、既存店舗における業績、顧客属性、サービス満足度のデータを用いる場合、その店舗の改善ポイントや、他店舗で活用できる内容を明らかにすることが重要です。また、将来予測に際しては、既存店舗のデータ分析が正しく目的を果たし、正確な判断につながることが、1年先の店舗運営における仮説や予測の精度向上、そしてリスクヘッジに直結すると考えています。 会議で何を共有? 会議や立ち話などの中で分析に関する話題が上がった際も、まずは紙一枚に目的、期間、どのようなデータが必要か、既存のデータなのか、どの部分から入手可能かをまとめることが大切です。その上で、依頼者と意見をすり合わせながら進めることが効果的です。 定性データは役立つ? また、定性データの活用についても重要な視点です。仮説設定の根拠や課題確認のため、まずは定性データに目を通す機会を十分に設けることが求められます。 AI活用の注意点は? 現時点では、AIの活用は基本的に注意が必要ですが、関係のない自作データなどを用い、どのようなデータの見せ方が効果的かを試行するなど、活用の視点から取り組んでみると良いと感じています。

クリティカルシンキング入門

グラフと資料で学ぶ伝える技術

この学びはどう? 今回の学びの中で特に印象に残ったことについて述べたいと思います。 グラフで伝わる? まず、情報を伝える際のグラフの使い方についてです。グラフの見せ方を工夫し、メッセージと整合させることで、伝えられる内容やその影響度が大きく変わると感じました。目的に応じて効果的にグラフを活用することが重要です。 資料作りは大丈夫? 次に、資料作成において相手に情報を探させないことの大切さを学びました。相手に情報を探させてしまうと、伝えたい事項が正確に伝わらない可能性があります。だからこそ、スライドは丁寧に作成し、流れに沿った構造にすることが求められます。 文章は魅力的? また、良い文章作成のための工夫についても考える機会がありました。良い文章とは、目的を明確にし、読み手を理解し、内容を保証し、読んでもらえる構成を持っています。フォントや色使い、グラフや図表メッセージの整合性を活用し、文章を魅力的に見せる必要があると感じました。これまでただ文章を作成していただけですが、今後は誰に対して何を伝えたいのかを意識しながら、より効果的な文章を目指していきたいと思います。 会議は効率的? さらに、営業の定例会議での報告についても触れておきます。既にグラフによる整理はされていますが、さらなる見せ方の改善に取り組み、目的を整理し、会議の効率化を目指したいと考えています。 イベントで伝える? 各種イベント資料の作成については、その都度目的に応じた資料を用意することが必要です。対象者によって内容を適切に調整し、効果的な情報提供を行えるように努めたいと思います。また、事業部への活動報告の機会は少ないですが、その際も読んでもらえる工夫を施していきたいと思います。 目的は明確? 最後に、資料作成においては、目的を明確にし伝えたい内容をはっきりさせることを心がけます。タイトルとグラフの整合性を念頭に、構成を考慮して作成していくつもりです。完成度が60%程度でも、全体の構成を確認し、目的とメッセージがぶれないように見極めながら進めていきたいと思います。フォントや色使いにも注意を払い、視覚的に魅力のある資料作成を意識していきます。

クリティカルシンキング入門

データを分解して得る新たな視点

データ分解で得られる新視点とは? データを分解することで事象の解像度が上がることを学びました。データを単なる数字として見るのではなく、一手間加えることで新たな視点が得られます。例えば、データをグラフ化したり、割合を計算してみたりすることで、より深く理解できることが多いです。 データをどう分けるべきか? データを分ける際には、定性的な仮説を持ち、複数の切り口から分解することが重要です。その際、MECE(もれなくダブりなく)の原則を活用すると効果的です。MECEを用いると、全体集合を部分に分ける(足し算)、事象を変数で分ける(かけ算/わり算)、あるいはプロセスで分けるという切り口が考えられます。 MECEの原則を実践するには? 私はこの概念を知ってはいましたが、実際に分解をする際にうまくできていないと感じていました。切り口についても感覚に頼っていましたが、言語化された切り口を示されたことで、今後はそれを指針にできるようになったと感じています。 営業成果への応用とは? 営業部門の成果の低迷や、良好な場合の要因を探るために、この手法が活用できると思います。プロセスで分解している部分はありますが、クライアントを特徴別に分けたり(足し算)、売上や利益率から分解する(かけ算/わり算)部分が不足していることに気づきました。これを行うことで、良い成果を上げた要因を特定し、勝ちパターンを見出すことができ、悪い時は修正ポイントを明確にして改善行動に役立てることができると思います。 人事課題の解析はどう役立つ? また、人事課題の検討においても、従業員をMECEで分解し、課題点を探ることで、解決策を考えるのに役立てることができると感じています。 実践のための初めの一歩は? 学んだことを実践に移すため、データの切り分けを実際に行う機会を持ちたいと考えています。現在、すぐに取り組むべき課題もいくつかありますが、データを全体的に捉えられていないものが多いです。まずはデータを集めることから始めなければなりません。そのために、どのようなデータが必要なのかを5W1Hを使って考え、それをMECEを用いて分解しようと考えています。

データ・アナリティクス入門

分解思考で掴む未来へのヒント

理想と現実の違いは? 問題定義については、常に「あるべき姿」と現実とのギャップを意識し、そのギャップを埋めるために関係者と共通認識を持つことが重要だと感じました。 分解法の違いは? ロジックツリーには、「層別分解」と「変数分解」が存在します。私自身はこれを「足し算分解」と「掛け算分解」と表現しています。加えて、感度の良い切り口を多数持っておくことも大切ですが、これが自分の長年の課題となっています。 大枠から取り組むのは? 問題分析を行う際は、まず大きな枠組みから着手することが肝要です。私は計数業務や人材育成、組織開発を担当しているため、さまざまな場面でこのアプローチを用いています。 評価の焦点は? 具体的には、売上や予算を検討する際には、分解を通じて問題の大きさや影響範囲を特定するよう努めています。また、人材育成の方法を考えるときには、何が効果的かを明確にするために要素を分解し、議論を深めています。 要因の絞り方は? さらに、組織の問題に取り組む際は、組織のありたい姿を定義した上で問題を分解し、その要因候補を絞り込む作業を重ねています。 成果物はどう捉える? また、業務のアウトプット分解についても考えさせられます。業務を成果物と、それを生み出すアクションに分解し、受け取り手の観点から何が必要かを吟味することが、業務完了に向けた重要なポイントだと感じています。 分類項目のコツは? 売上や予算の項目に関しては、適切な分類項目の設定が、事業の推進状況を的確に把握するために役立つと考えています。 育成理論を再検討? 人材育成の観点分析では、人の性質や評価の項目化は進んでいる一方で、育成方法論についてはまだまだ整理の余地があるように思います。ここでは、「When」や「Where」といった切り口で新たな項目化ができる可能性があると捉えています。 数値評価の意義は? 最後に、組織の問題分析では、定期的な組織評価の数値を基に、課題項目がどの要素や要因に分解されるのかを試行することが、今後の改善に向けた有効な戦略であると感じています。

「良い × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right