データ・アナリティクス入門

新発見!数値が語る学びの軌跡

代表値の選択は? 代表値について、どのケースでどの値を選ぶのが適切か、具体的な例を交えて理解できました。これまであまり馴染みのなかった加重平均、幾何平均、標準偏差を正しく認識できたことが大きな学びとなりました。 申し込み数の平均は? イベントの日々の申し込み数を算出する場合、たとえばメルマガなどこちらからのアクションがあるかどうかで数値が変わるため、単純平均ではなく加重平均を使用する方法が適切だと感じました。普段見慣れている数字が大きく変化する可能性を実感しました。 目標設定はどう? 今後は、過去の学習内容を振り返り、まず自分が何を達成したいのかという目的を明確にすることから始めたいと思います。その上で、どの代表値を用いるべきかを検討する必要があると感じています。経験や知識が十分でない部分は、AIのサポートも活用しながら、徐々に自分の中に定着させていきたいと考えています。

クリティカルシンキング入門

問い直しで見える新しい景色

問いはどのように設定? 問いを正しく設定することが非常に重要であると実感しました。問いの立て方一つで導かれる答えが大きく変わるため、問題の本質を見極めることが求められます。そのため、データをどの角度や観点から見るかを常に意識し、さまざまな視点から疑問を持って捉える必要があると感じました。また、プロセスを進める中で、最初の問いを再確認し続けることで、答えがぶれずに一貫性を保つことができると考えています。 損益管理で何を問い直す? また、損益管理における課題についても、まず問いが何であるかを改めて考える必要性を感じています。具体的な行動に焦点を合わせがちですが、何が本当の問題なのかを問い直すことに意識を向けることが重要だと思います。さらに、この考え方を自分だけでなく部下とも共有することで、彼らにも問題の本質に気付くきっかけを提供し、共に成長していけるよう努めていきたいと考えています。

データ・アナリティクス入門

5視点で探る仮説と分析の力

分析はどう始まる? 分析は比較から始まるという考え方と、問い・仮説設定・検証というサイクルが実務に合致する点に強く共感しました。また、インパクト、ギャップ、トレンド、ばらつき、パターンの5つの視点をすべて捉えることで、初めて価値ある情報が得られるという認識が深まりました。 変化と課題は何? 先週と大きなテーマの変化はなく、内容自体も大きく変わりませんが、5つの視点を活かし、業務でのアウトプットが比較によって生み出される価値に繋がると考えています。一方で、分析を活用する際の課題として、仮説検証のサイクルの速さや仮説の精度が挙げられます。特に、データ分析の初動を誤らないことが、仮説の精度を高める上で重要だと感じました。 仮説の壁をどう乗る? また、「仮説を立てることが難しい」との声をよく耳にします。皆さまはどのような方法で仮説を構築されているのか、ぜひ知りたいと思います。

リーダーシップ・キャリアビジョン入門

意識から始まる本当のリーダーシップ

氷山モデルって何? 今週の学びで一番印象に残ったのは、氷山モデルの仕組みです。行動はその人の意識が外に現れてこそ確認できるものであり、まず自分の意識が出発点となることを強く感じました。また、目標実現のためには能力の向上も不可欠であると実感しました。 伝え方はどうする? 私は営業職に従事しており、年度変わりの時期に新たな方針が示されても、ただ部下に伝えるだけでは大きな成果は得られないと考えています。自らリーダーシップを発揮し、作業の目的や意義を積極的に伝えることが重要だと思いました。 目標達成の計画は? そのため、4月に半月ごとの振り返りミーティングを設定し、重要な項目について改めて推進の意義を話し合う予定です。さらに、半期目標達成のためのロードマップを作成し、自分が目指す理想のリーダー像についてもオープンに共有することで、周囲に自分のビジョンを示そうと考えています。

クリティカルシンキング入門

目的がぶれない学びの軌跡

目的と問いに迫る? 今回の学習では、目的を明確にし全体像を把握すること、さらには質問を分類し具体的な問い合わせによって問題点を洗い出すことの重要性を理解しました。その上で、正しい問いの設定には振り返りが不可欠であり、適宜確認することが大切だと再認識しました。 本質問題をどう捉える? プロジェクトを推進する中では、課題解決に向けた取り組みの際、本質的な問題や真因を見失う可能性があると感じました。こうした状況において、常にイシューを意識することで、ぶれずに考え、適切な行動を起こせるのではないかと思います。 イシューは共有できる? これからは、まずイシューを共有できる体制を整え、何が課題で何が目的であったかを振り返り確認することを実行していこうと思います。また、データ分析においても、結論に先立つのではなく、背後に潜む事実をしっかりと確認する姿勢を持ち続けたいと考えます。

データ・アナリティクス入門

アンケート成果を活かすデータ分析術

アンケート設計のコツは? デジタル化を進めるにあたり、今後お客様アンケートを実施する予定があります。今週学んだことを活かして、アンケートの集計に役立てたいと考えています。アンケートには定性的および定量的な質問がありますが、定量的な質問に関しては、単に平均値のみでなく、中央値や最頻値も確認し、傾向やばらつきを把握することが重要です。質問を設計する際には、事前に仮説を立て、それを証明するための最小限の質問を設定することが求められます。 結果報告の工夫は? まずは直近のアンケート業務で学びを実践し、集計後にはそれをもとに報告を行う予定です。その際には、結果をどのようにビジュアル化して示すかを考慮します。単純に平均値や最も多い回答を示すだけでなく、仮説に基づいたアンケート設計により、得られた結果から示唆を引き出し、それに基づいて施策をストーリーとして検討することが大切です。

データ・アナリティクス入門

目的から逸れずに効率UP!分析のコツ

目的設定はなぜ重要? 目的と比較の設定は非常に重要です。特に他者に仕事を依頼する際は、これが鍵となります。分析においても、目的に沿った意味のある係数と、そうでないものを見極める必要があります。目的によってその意味は変わり、使い方次第では係数の有無も変わってきます。 自己分析で気をつける点は? 自己分析の際も、目的からぶれないことが重要であり、目的に応じた答えや提案が含まれるインサイトを得られるかを考慮する必要があります。チームに依頼する際も同様に、彼らの仕事が意味を持つよう、効率化できるポイントを設定します。 比較時に確認すべきことは? 何が目的なのかを明確に書き出し、何をどの観点から比較したいかを考慮します。また、目的から逸れそうになったら立ち返って確認することが大切です。比較がきちんと同じ条件下で行われているかも再度確認しなければなりません。

データ・アナリティクス入門

段階的アプローチで着実成長

講義で何を実感した? これまでの講義を通じて、分析のフレームワークや思考の順番をしっかりと理解することができました。段階を追って課題を解き明かすことで、最初から一気に取り組むよりも、より複雑な問題に対処できると実感しています。 課題設定はどう進む? データ分析の業務では、ただ急いで分析を実施するのではなく、まず解決すべき課題を明確にし、仮説を立てながら進めることが大切だと感じます。また、必要に応じてデータを扱う関係者と意見交換しながら検証を進めることで、より確実な結果にたどり着けると思います。 日々の工夫は何? 今後は、学んだフレームワークや仮説検証の流れを自分の言葉で他者に説明し、日々の業務に取り入れる工夫をしていきたいと考えています。小さな実践を積み重ねることで、自分の思考プロセスが自然に身につき、学びを習慣化できるよう努めていきます。

データ・アナリティクス入門

数字が語る成功への道

分析と代表値の使い道は? 分析の基本プロセスや代表値の種類について、非常にしっかり理解できています。実際の案件分析やKPIの見直しにおいて、売上、利益、譲渡額、成約期間など、各データのばらつきに応じて単純平均、加重平均、中央値などの代表値を使い分けることができています。また、ばらつきや2SDルールなども活用し、最適な視点からデータを分析している点が印象的です。 説明とKPIの関係は? 現状、データ分析の結果に基づいてKPIが作成・発信されているため、今後はその数値が目標となる理由を、メンバーがより納得できる図表を用いて可視化し、説明できるようにしていきたいと考えています。同時に、分析のプロセスにおいて、目的の明確化、仮説の設定、データ収集、そして仮説(ストーリー)の検証の手順を、メンバーが理解しながら適宜視点とアプローチを選択できるよう指導していく所存です。

クリティカルシンキング入門

気づきと実践が生む会議の質

多角的な視点って? 質問の意図を深く考えることなく、複数の視点から答えを導こうとすると、得られる答えが大きく変わると実感しました。また、相手がどのような答えを求めているのかという視点も非常に重要であると感じました。ご教示いただいた内容は理解するの自体はそれほど難しくありませんでしたが、実際にふとした時に意識できるようになるためには、繰り返し振り返ることが大切だと思います。 会議準備はどうする? 会議のファシリテーターとして、異なる部署が参加する会議の場合、事前にどんな意見が出るか、どれだけの時間が必要なのか、そしてゴールをどこに設定するのかといった準備の重要性を学びました。今後は、この学びを生かし、会議の進行方法についてより意識して取り組んでいきたいと考えています。さらに、学んだことを常に意識し続けるための効果的な方法があれば、ぜひ教えていただきたいです。

データ・アナリティクス入門

どのデータを集めるかが未来を決める

比較の重要性を再考する 分析の本質は比較であることを学びました。これまで、比較対象の選定や要素の統一が不十分だったため、正確な分析ができていなかったと感じます。特に、生存者バイアスがかかってしまうことが多かったことを反省しています。 実証実験で得る結果は? 新規事業を創出する部門に所属しているため、秋から行う実証実験ではデータの適切な分析と比較対象の正確な選定を心掛け、意味のある結果を得たいと考えています。また、取得したいデータの設計も行い、目的に合った実証実験を行いたいと思います。 適切なデータ設計とは? 実証実験の目的を再確認し、成功と見なされるために必要な情報を考えます。どのようなデータを取得すればよいかを設計し、それを企画に反映させます。分析の本質は比較にあることを常に念頭に置き、適切な比較対象を設定することを意識して進めていきたいです。

アカウンティング入門

PL活用で利益を生む戦略を再考する

PLで見えるコストと利益は? PLを通じて、どの部分にコストがかかり、どの部分で利益が発生しているのかを理解することができました。それぞれの店舗のコンセプトに応じて、どこに重点を置いて計画を立て、利益を生むためにはどのような売上計画を立てればよいかを再認識しました。 自部署のコスト改善に向けて 自部署では、PLを活用してどの部門にコストがかかっているのか、改善の余地があるのはどこかを分析し、目標を設定して効率的な戦略を立てたいと考えます。また、なぜコストがかかるのかを過去のPLと比較して分析することで、PLをより有効に活用できるようになりたいと思います。 設備投資計画のリスク管理 私の担当する設備投資計画では、PLを活用して設備導入時の利益発生箇所やコスト発生要因を明確にし、投資リスクを考慮しつつ、効果的な設備投資を実施できるようにしたいです。

「設定」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right