クリティカルシンキング入門

課題解決の秘訣は「問いのブレ」防止

イシュー特定はなぜ重要? イシューの特定の重要性を改めて実感しました。それ以上に「問い」の方向性をブレないよう意識し続けることの重要性に気付かされました。課題を特定し、イシューを設定した後、実際に分析や議論に移る際、この「問い」がブレることが多々あります。気づけば最初に設定したイシューからずれた議論をしていることが何度もありましたので、改めて見直したいと思います。 データ分析で避けたいミスは? データ分析においては、「問い」の方向性がブレてしまい後で気づき、やり直しが発生することがしばしばです。数字に触れ始めると、「分析」に夢中になり、本来の目的を見失ってしまうことがよくあります。特に注意すべきは「やった気になってしまうこと」であり、過去の経験を通じてこれを痛感しました。この講座を通して学んだフレームワークを意識し、同じ失敗を繰り返さないようにしたいと思います。 言語化の効果とは? 「イシューを押さえ続けること」は「意識」するだけでは難しいため、言語化を必ず意識したいです。言語化することで、自分だけでなく、周りの方との認識統一にもつながります。これができると、自分が「問い」からずれていても、「誰かが気づき」修正してもらうことができます。自身の考えを客観的に見ることは重要ですが、完璧にはできません。常に第三者のヘルプも借りながら進めたいと思います。

リーダーシップ・キャリアビジョン入門

仲間と共に切り拓く成長の道

本当のリーダー像は? リーダーシップを発揮するためには、行動、能力、そして意識を通して自分の強みや弱みを把握し、自分に合ったリーダーシップ像を考えることが重要だと感じました。正解となるリーダー像は存在せず、目標とする姿を自ら模索していく必要があります。また、肩書にとらわれず、主体的に周囲のメンバーに働きかける姿勢も大切だと実感しています。 エラー防止の工夫は? 現在、自部門において発生した工程エラーの再発防止策に取り組んでおり、その取りまとめ役を担っています。関係部門は多岐に渡るため、各部門が自分ごととして主体的に取り組むことが極めて重要です。従来の私の進め方は、自分でどんどん物事を進めていたため、メンバーが他人事のように感じてしまうという課題がありました。そこで、今回からは自分が担当すべきことと、メンバーに任せるべきことの線引きを明確にし、各メンバーが主体的に関わるように促していきます。 進捗確認はどうする? 具体的には、まず全メンバーで発生原因を考察する場を設定します。その上で、関わる各部門の立場に立ちながら改善策を協議し、各部門ごとに改善計画を策定します。工場内でその計画を表明し、意思表示をすることで、取り組みの進捗を定期的に確認します。また、進捗が停滞している案件については、積極的にフォローし、具体的な実施につなげていく予定です。

データ・アナリティクス入門

学びの軌跡が未来を照らす

仮説の切り口はどう? 原因の仮説を洗い出す際は、フレームワークなどを活用しながら大きく2つに分け、対概念の視点を取り入れて考えることが有用です。その後、問題の原因を明確にするために、ステップを踏んでデータを分析することで精度を高められます。 解決策はどう選ぶ? また、解決策を立案する際には、複数の選択肢をまず洗い出し、しっかりとした判断基準と重み付けを設定した上で、定量的な根拠により絞り込むことが重要です。 アンケートの見方は? アンケートの分析においては、満足度や推奨度などの数値から問題点を見つけ出し、フレームワークを用いてMECE(漏れなく・ダブりなく)を意識しながら原因を掘り下げることが考えられます。対応策を検討する際には、現状設定している軸に加え、コスト、スピード、対象範囲、実現可能性などの評価項目に対して重み付けを行いながら施策を選択していくことが求められると感じました。 分析の盲点はどこ? これまでのアンケート分析では、満足度、推奨度、理解度などを全体の平均値で評価する手法が主流でした。しかし、全体の数値は悪くなくとも狙い通りの結果が得られなかった場合や、自由記述回答の中に不満やクレームが見受けられた際には、回答者の属性ごとに分析を行うことで、これまで気づかなかった傾向や問題点を発見できる可能性があると捉えています。

データ・アナリティクス入門

数字が紡ぐ学びの軌跡

データ加工はどう整理する? データ加工においては、数値に集約して捉える、目で見て把握する、そして数式に集約するという3つの方法を基本としています。 分析はどう進む? 分析の際は、まず目的(問い)を設定し、仮説を立てたうえでデータ収集・検証を繰り返すプロセスが基本です。さらに、インパクト、ギャップ、トレンド、ばらつき、パターンの視点と、グラフ、数字、数式というアプローチを組み合わせることで、多角的に情報を捉えています。 数値管理はどう考える? 具体的な数値の扱いとしては、代表値に単純平均、加重平均、幾何平均、中央値を用い、散らばりは標準偏差で表現します。ただし、平均値は外れ値の影響を受けやすいことに注意が必要です。 セグメントはどう見る? また、キャンペーンメールのデータと顧客データを用いた分析では、どのセグメントにどのような傾向があるかを明確にし、それをもとに有意差が見込める仮説を立てる際に、プロセス・視点・アプローチの組み合わせが効果的であると感じました。 検証の深め方は? 以前は、キャンペーンメールと顧客データを分析する際、インパクト、ギャップ、トレンド、ばらつき、パターンといった視点に十分意識を向けていなかったため、今後はこれらの視点をしっかりと取り入れながら仮説を立て、より精度の高い検証を行っていきたいと考えています。

クリティカルシンキング入門

問いが導く学びの未来

イシューって何が大事? イシューを明確に設定することは非常に重要です。また、常に問いを残し、その問いを共有する姿勢が大切だと感じます。問いという形にすることで、問われた際に答えを出そうという意欲が湧き、余計なことを考える余地がなくなります。その結果、論理的な思考が促され、問題解決に繋がると考えています。加えて、知識は「インプット」から始まり、「知識の活用によるアウトプット」、さらに「他者からのフィードバック」や「振り返り」といったサイクルを継続することで身に付くと思いました。 どう計画に反映する? また、会社の方針を自部門の計画に反映させるとともに、その計画を分解して部下に展開する際にも、このアプローチは有効だと考えます。経営層の指針が正しく、かつ方向性を変えることなく伝わるためのツールとしても活用できるのではないかと思います。 計画の検証、どう進める? 計画立案にあたっては、まず必要な項目や要素を漏れなく、かつ重複なく洗い出すことが求められます。そして、思い込みを排除し、客観的な視点で検証することも重要です。さらに、計画の中でイシューを特定し、対応策が論理的であるか、また設定した枠組みから逸脱していないかを慎重に考える必要があります。最後に、各対応策の根拠を明確にし、その正当性を確認することが、計画の成功に向けた鍵となると感じました。

データ・アナリティクス入門

誰もが知る役立つ顧客データ分析の秘訣

分析目的の共有は済んでいる? 分析においては、まず目的をステークホルダーと共有し、判断の基準となる適切な比較対象を設定することが重要です。その後、グラフを用いて直感的に分析結果を把握できるように表現することが求められます。さらに、データが名義尺度、順序尺度、間隔尺度、比例尺度のいずれに該当するかを確認し、適切に扱う必要があります。 顧客データは適切か? 顧客情報の分析を依頼されることはよくあります。この際には、集計の目的をしっかりと理解し、対象となるデータが本当に適切であるかを確認してから分析を行うように心がけています。特に、分析結果が事前の予測から外れることがあります。その原因を探ると、対象外の顧客が対象データに含まれているという事例が多く存在します。 データグルーピングの確認 分析を行う際には、まず分析の目的と分析対象データの中身を事前に確認し、目的に対してデータの対象が適切であるかどうかを確認します。特に、データのグルーピングを行う際には、そのグルーピングが正しいかどうかを作業中でも確認することが重要です。提供されたデータには、抽出条件が不明確であったり、対象外のデータが混じっていたりすることが多いため、グルーピングの条件についてはステークホルダー間で共通認識を持つ必要があります。これを怠ると、分析をやり直すことになる可能性があります。

データ・アナリティクス入門

データに賭けた挑戦と発見

目標設定はどう? 「分析は比較なり」「何を明らかにしたいのか」という考えを軸に、データから得られる情報を見失わないため、まず明確な目標を設定しています。その目標に向かい、必要なデータやストーリーともいえる仮説を構築し、試行と検証を繰り返すことで、求める結果に近づけています。 データ表現はどう? また、取り扱うデータの種類に応じた加工方法やグラフの見せ方が重要であると感じています。そのため、状況に合わせて最適な表現方法を選ぶことに努め、いかなる場合も「とりあえず」での加工を避け、ビジネスにおける分析では、データに入る前に「目的」や「仮説」がしっかり整っていることを確認しています。 ランニング費用はどう? これまで部門費管理を想定していた中で、担当しているITツールのランニングコストについても、使用金額や実際の作業時間など、これまで取得してこなかった新たなデータ要素を活用していく計画です。これにより、必要なツールや今後の投資対象となるソフトウエアの分析に役立てようとしています。 データ収集の工夫はどう? さらに、データが不足している点を解消するため、まずは必要なデータの収集に力を入れると同時に、作業の効率化や一部自動化の導入も視野に入れています。今回の講座を通じて、時間の有限性を改めて認識し、これからはより計画的に活動していく所存です。

クリティカルシンキング入門

生産部門のトラブル解決に光明を見出す学び

ゴール達成への基本戦略は? 以下2点について学びました。 1. 到達したいゴールに向けてマイルストーンを設定し、その時々でイシューを考え、それに対する打ち手を取る必要がある。 2. データをさまざまな角度から分析し、イシューを特定する必要がある。 業務としては製薬会社の生産部門におけるトラブル解決を担当しております。この知識を業務にどう活かせるか、以下の具体例が思い浮かびました。 トラブル解決に必要な視点とは? まず、年間目標や個々の業務における課題解決においては、到達したいゴールに向けてマイルストーンを設定し、それぞれのタイミングでイシューを特定し、具体的な対策を検討することが必要です。 次に、生産部門におけるトラブルの原因究明とその解決策の立案については、様々な角度からデータを分析し、イシューを特定することが重要です。これにより、より的確な原因分析と解決策の提案が可能になります。 メンバー育成に活かせるアプローチは? 最後に、部門におけるメンバーのキャリア開発と育成についても、前述の2つの原則を適用することができます。メンバーの成長に向けた目標を設定し、その達成のための具体的なイシューと打ち手を考えます。 以上のように、学んだ知識を活用して業務を進めていくことで、課題解決能力の向上や部門の効率化が期待できると考えます。

戦略思考入門

差別化戦略で顧客価値を見極める

差別化のポイントをどう理解する? 今週は差別化のポイントについて学びました。自社がどの戦略を取るべきかを決定するために、次の4つの視点を重視すべきだと理解しました。1つ目はターゲット顧客の設定、2つ目は顧客ニーズの把握、3つ目は競合他社の施策の理解、そして4つ目が実現可能性と継続性です。 経験から学んだこととは? 実践演習では、製品やサービス、チャネルなどの項目で情報を分けることで、自社や競合、顧客層、顧客ニーズを整理しやすくなりました。しかし、私自身の切り口が細かすぎたため、切り口の工夫が必要であると感じました。 顧客視点を業務にどう活用するか? 私の業務では競合との差別化を考える機会は少ないのですが、「顧客にとって価値があるのか」「実現可能性や持続可能性について検討したか」といった視点は、自らの業務に活用できると確信しています。この考え方を取り入れることで、常に顧客やトレンドを見直しつつ、他者にも説得力のある施策を決定できると考えています。 改善策をどう進める? また、中期プランおよびコールセンターの満足度改善計画を立てており、出てきた改善策に対して、「顧客を誰とするのか」「顧客にとって価値があるのか」「実現可能性や持続可能性について検討したか」を自分自身やメンバーに問いかけ、言語化および視覚化を進めていきたいと考えています。

リーダーシップ・キャリアビジョン入門

自分で目標を立てる楽しさを発見

自発性を引き出す目標設定は? 目標設定のプロセスにおいては、相手から自発的に意見を引き出し、自ら目標を設定する流れを構築することが重要です。これにより、目標設定のプロセスへこれまで以上に積極的に参加してもらうことを目指します。 効率的な目標設定の流れとは? 現状の目標設定の流れは次の通りです。まず、上席で骨格を作成し、全体で確認会を実施します。その後、各担当が目標の詳細を作成し、個別面談を行います。このプロセスでは、特に確認会と個別面談において、相手からの意見をしっかり引き出し、彼らの興味を引いてプロセスに参加させることが求められます。さらに、自身に余裕を持ち、自分のペースを管理することも重要です。 プロジェクト見直しから始めるべきか? この動きは半期に一度のものであるため、まずは進行中のプロジェクトの見直しから始めます。そして、指示型のプロジェクトについては、今後の目標設定を再構築するために、具体的な対応策として以下のステップを設定します。 具体的な対応策とは? まず、全体像を再度整理して担当スタッフに共有します。次に、担当スタッフとして彼らの考えや課題を引き出し、共に今後の道筋を立てることが目標です。そして、2月5日の会合に余裕を持って臨めるよう、2月4日までに月次業務やその他の業務に目処をつけておくことが必要です。

アカウンティング入門

経営の数字に秘めた物語

貸借対照表の役割は? 貸借対照表は、お金の使い道と調達方法が表裏一体であることを両側面から確認できる重要な資料です。まず、資産はその変動性によって「流動資産」と「固定資産」に分けられ、1年以内に変動する可能性があるかどうかで判断されます。資産の金額が大きいほど会社の規模は示されますが、内訳や構成を確認することで、その資産がどの程度安定しているのかを見極めることができます。 流動資産と固定資産の違いは? また、企業の業種やビジネスモデルにより、固定資産と流動資産の比率は大きく異なります。初期投資が必要な業界では固定資産の割合が高くなる傾向にある一方で、流動性を重視する企業では流動資産の比率が高くなることが多いです。こうした視点から、勘定科目の設定やインポートを行う際、自身でその科目が流動なのか固定なのかを推測できるようになると、より深い理解につながります。 他社比較で見るポイントは? さらに、自社と競合他社の貸借対照表を比較することで、純資産と負債、流動資産と固定資産の割合や金額の規模感、さらには自己資本比率といった数値から企業の健全性や経営の安定度を確認することができます。決算書を細かく分析することで、たとえ赤字が出た場合でも、企業が存続できる要因や、市場の変動に対してどの程度影響を受けやすいのかを把握する手がかりとなるでしょう。

データ・アナリティクス入門

ファネル分析で顧客行動を最適化する方法

ファネル分析の重要性とは? マーケティング分野での業務経験があるため、比較的知っていることが多かったですが、ファネル分析において顧客の行動プロセスを適切に設定する必要性を改めて認識しました。また、プロセス×ウォーターフォールチャートはあまり使っていなかったので、今後活用してみたいと思います。 ABテストの基本と注意点は? 以下、授業メモです。 ◆ABテスト - ABテストは1要素ずつ行います。複数の要素をテストしたい場合は、別の手法を検討する必要があります。 ◆ファネル分析 - ユーザーの利用段階ごとに、どの段階でユーザーが離脱しているのかを可視化します。 - プロセス×ウオーターフォールチャートを適切に活用します。 - 顧客の行動プロセスを適切に設定することが重要です。 GA4での課題解決にどう取り組む? GA4でのファネル分析を新たに作成する際には、顧客の行動プロセスを意識します。また、プロセス×ウオーターフォールチャートを適切に活用し、ABテストもページスピードが低下するリスクを考慮しつつ活用を検討します。 ちょうど製品サイトのリニューアルを進めており、GA4の設定も見直す予定です。顧客の行動プロセスを意識したファネル分析を行い、原因探索が適切に行えるようにします。また、見出した原因に基づく改善にはABテストを活用します。

「設定」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right