デザイン思考入門

制約でひらくアイデアの扉

アイデアはどう生まれる? 講義の最後に提示された手法に沿い、現在の業務上の課題である「当グループの中核人材育成研修見直しの方向性」についてアイデア出しを試みました。具体的には、既存のEラーニングを代用する(substitute)、研修の成績と人事考課を組み合わせる(combine)、AI技術を応用して上司と部下のロールプレイを実施する(adapt)、ケースメソッド講義で扱う事例を再整備する(modify)、課題解決プロジェクトに転用する(put to other uses)、標準カリキュラムの日数を削減しその代わりにフォロー研修を強化する(eliminate)、研修の目的自体を再考する(reverse/rearrange)といったアイデアが浮かびました。 SCAMPER法の魅力は? SCAMPER法は、一定の縛りの中でアイデアを出すことで、自分でも予想しなかった斬新な発想が得られる点が魅力的だと感じました。一方で、既に議論が進んでいる分野にこの手法を適用する場合、既存の意見に引っ張られてしまうこともあり、アイデア創出の観点では注意が必要だと実感しました。 ブレインストーミングはどう? また、ブレインストーミングについては、短時間で多くの新しいアイデアを生み出すための集団発想法として、その手法や効果を再認識しました。紙やホワイトボードに思い浮かんだアイデアを書き出すこと、グループで進める際には自由な雰囲気を保ちながらも、質より量を重視することが大切であると感じました。 アイデア整理はどう? さらに、ブレインストーミングで出たアイデアを系統ごとに整理・分類するKJ法や、ユーザーの行動をストーリー化し各シーンごとの感情や潜在的ニーズを検証するシナリオ法、サービスの原型を紙に落とし込むペーパープロトタイピング、そして顧客に提供する価値の明確化を目的としたバリュープロポジションやコンセプト設定についての学びも得ました。 今日の学びをどう活かす? 今日の学びとして、アイデア出しに制約を設けることで新たな切り口が生まれること、一見突飛に感じるアイデアも数多く出すことで真に有効な発想にたどり着けること、そしてそれらのアイデアを明文化・可視化して整理することの重要性を再確認しました。

戦略思考入門

捨てる勇気と明日の可能性

捨てるの意味は何? 「捨てる=取捨選択」という言葉はよく耳にしますが、具体的な成功事例、たとえば有名なアパレル企業や宿泊業界の事例を通して、捨てることによるメリットをより解像度高く理解することができました。捨てるためには、何を優先すべきか、また何を優先しないのかを明確にし、優先順位を決定する基準としては、情報の正確な把握や試算、さらには「ROI(投資対効果)」を意識することが重要だと実感しました。これまで感覚や時間軸に頼って判断していたものを、今回の学びを通じて具体的な手順に落とし込めた点が大きな収穫です。 どう判断すればいい? 具体的には、まず相手が何を求め、どのような点を評価しているのかを正確に把握すること。次に、必要な情報を収集し、試算を交えて判断する。そして、時間軸や費用軸を踏まえたうえで、投資対効果を意識しながら優先順位を設定する姿勢が求められると感じました。これにより、勇気をもって選択する大切さも改めて意識することができました。 品揃えの取捨は? 業務面では、例えば食品を扱う現場における「品揃え」が重要なポイントとなります。差別化のために他では扱えないこだわりの品や地域特有の商品を取り入れる方法もありますが、生産効率や配送効率の面からコストが高くなる可能性があります。従来は時間軸で判断していた品揃えの優先順位も、今後はROIを意識して決定していく必要があると考えます。 現状の課題は何? また、自社においては人員不足や多様な食品の嗜好に対応するため、すべての取引に対して十分なリソースを割くことが難しい現状があります。売上に直結する取引の数は非常に多いものの、対応可能な人員や時間、コストを踏まえて判断する必要性を認識しました。自らが取引の決定権を持つわけではありませんが、判断材料としてしっかりと把握しておくことが求められると感じました。 次の行動は? 今後の行動計画としては、過去から続く取引について、売上や利益、投入した時間を算出し、内容の棚卸しや整理を実施します。さらに、時間あたりの利益を基準に優先順位を設定し、自身の業務において取り組む順番や時間配分を見直していきます。最後に、上司へこれらの取引に関する進言を行い、全体の効率向上につなげたいと思います。

クリティカルシンキング入門

MECE法で分かる問題解決の全貌と実践術

状況変化の把握方法とは? 状況の変化を把握するためには、「分ける」ことと「視覚化」がポイントとなります。「分ける」際には、複数の切り口を出し、機械的ではなく、目的に沿ってどのように分解すると状況が見えやすくなるかを考えることが重要です。この時に使える手法が「MECE(Mutually Exclusive, Collectively Exhaustive)法」であり、漏れなくダブりなく分けることを意識する必要があります。 MECE法の具体的な手法を学ぶ MECE法には次の3つの方法があります: 1. 層別分解:全体を定義して分ける(例:単価別、年代別) 2. 変数分解:一つの数字に対する変数を分ける(例:売上=客数×単価) 3. プロセス分解:分析対象の事象に関する全体のプロセスを考えて分ける(例:来店→注文→食事を運ぶ→食べる→会計→退店) 分解スキルの課題と対策 私はこれまでMECEの概念は知っていましたが、特に分け方がうまくできないと感じていました。上記の①〜③の手法を知ることができたのが一番の収穫でした。また、「他には?本当に?」と問いかけることで、分解の妥当性を検証することも重要だと感じました。 解約要因とその分析法は? 解約要因の分析: - 層別:子どもの年齢別、親の年齢別、世帯年収別、利用回数別、子どもの人数別 - 変数:アプリ利用状況=利用頻度×利用ゲーム数×1ゲームあたりの利用時間 - プロセス:契約→初期設定→初回利用→2回目利用→解約までの利用状況→解約→再契約 変数分解スキルを向上させるには? 変数分解のスキルアップ: 私は比較的容易に層別やプロセス分解の案は出せましたが、変数分解が特に苦手だと感じました。そのため、業務内外を問わず、日常生活で目にする数字を構成する変数が何かを1日に最低1つは考えていきたいと思います。具体例はすぐに思いつかなかったので、他の受講生の投稿や知人とのコミュニケーションを通じて課題を見つけていきたいと思います。 クリティカルシンキングを強化する クリティカルシンキングの基本姿勢: - 分解の切り口を検討する際に3つの視点を変えてみる。 - 出した結果に対して「なぜ」「本当に」「他には」という問いかけを行う。

クリティカルシンキング入門

イシューを明確にして学びを深める力

学びを定着させるには? 改めて、「イシューを明確にする」「問いを立てる」「分解する」「視覚化する」ことの大切さが印象に残りました。GAiL内にも記載しましたが、全週を通してこれらの点が一番印象に残っています。これは自らの弱みでもあり、今後も受講して気づいたこと、学んだことを心に留め、大切にしていきたいと思います。 アウトプットの重要性とは? 学びを深めるためには、「アウトプット」と「振り返り」が不可欠です。今回のような学びの場でインプットだけで終わらせず、得た学びをもとにアウトプットすることが重要です。自分自身はアウトプットしっぱなしになりがちなので、その後の「振り返り」も重要だと感じました。IN→OUT→FB→振り返りをしっかり回していきたいです。 経験値をどう活かす? 「過去の経験値」をモノサシとして使うことは必ずしも間違いではありません。ただし、その経験が正しいのか自らを健全に疑い、正しく問いかけることが大切です。また、正しいと判断した経験を用いる際は、なぜその経験が有効なのかを明確に言語化し、他者に説明できるようにする必要があります。 逆算思考での気づきは? 物事を「逆算して考える」ことの大切さについてはよく言われていますが、LIVE授業内の例を通じて改めて気づきを得ることができました。 業務改善に活かす学びは? 現在取り組んでいる営業部へのヒアリング結果を基にした業務改善では、これまで学んだことの全てを活かすことが求められます。この取り組みはそれなりに時間がかかり、巻き込む人の数も多く、骨の折れる内容ですが、学んだことを活かして成果に繋げたいです。 1. イシューを明確にする、問いを立てる。  何を目的にしているのか? ゴールは何か? 目指したい姿や得たい結果は?  どこから手を付けるべきか? 第1領域か、第2領域か?  そこから手を付けるのは正しいのか? チームメンバーの意見は? 2. 分解する。  設定した課題を分解し、ボトルネックを特定する。 3. 改善策を立てる。  ①②を他者に伝える準備として、「視覚化」や「ビジネスライティング」など、学んだテクニックを総動員する。 4. 提案する。 以上の手順で、現在の取り組みを進めていきます。

データ・アナリティクス入門

仮説とデータ収集の極意に迫る

複数仮説をどう活用する? 仮説を考える際には、「複数の仮説を立てること」や「仮説同士に網羅性を持たせること」が重要です。その上で、仮説を検証するために必然的にデータを収集することが求められます。ケースの解説では「3C」「4P」が挙げられており、私が考えたケースの回答も結果として「4P」の視点に近かったですが、意識的に「4P」から発想したわけではありませんでした。どの場面でどのフレームワークを使用するべきか、まだ身についていないと感じましたので、今後はフレームワークを有効に使えるようにしたいです。 データ収集のポイントは? データ収集の際にも、仮説を持った上で臨むことが重要だと再認識しました。例えば、故障対応の増加で残業が増えているという問題に対して、「昨年と今年の故障件数」の比較ではなく、「1件あたりの対応時間」を比較する方が良いという解説を受けて、その認識が強まりました。 日常業務での仮説と分析 仮説を考え、必要なデータを収集し、分析することは日常業務のあらゆる場面で必要です。具体的には、「毎月の財務諸表の比較分析」、「毎月の営業活動の振り返り」、「毎週のユーザー数の動向分析(新規獲得率、解約率、更新率)」などが挙げられます。 中長期的視点での活用法 また、中長期的な視点を持つ業務では、年間の目標設定やその達成に向けての方法を考える際、中期的なビジョンを考える際に、フレームワークの活用が有効です。特に中長期的な視点では、その活用をより一層進めていきたいと思います。 データ自動化とフレームワーク整理 日常業務で必要なデータ収集は現時点では自動化されていますが、収集されたデータに漏れがないか、今一度チェックすることが大切です。また、仮説を立てる際にはフレームワークの活用が有効と感じていますが、どの場面でどのフレームワークが有効かを一度整理したいと思います。そのために、フレームワーク集の書籍を手元に置いておく、もしくはChatGPTにどのフレームワークを使うかを尋ねるという方法も考えています。 独自視点はどう持つ? ただし、フレームワークに頼りきりになると内容が似たり寄ったりになりがちですので、常に独自の視点がないかを意識していきたいと思います。

データ・アナリティクス入門

目的設定から始まる分析の旅

分析前に何を考える? 分析を始める前に、目的や仮説を明確に設定することが基本です。その上で初めて実際の分析に着手できます。データの加工については、AIの活用が効果的ですが、なぜそれを行うのか、また結果がどうであるのかという点については、人の意見が重要だと感じています。これまでの業務では、見やすさやわかりやすさに時間をかけすぎ、本質的な問いに対する回答が十分でなかったと実感しています。 定量データの違いは? 定量データには様々な種類があり、平均値を算出することが有意義な場合とそうでない場合とがあります。直感的には理解できるものの、理由を問われると具体的な説明が難しいこともあります。質的なデータか量的なデータかという違いよりも、それぞれの特徴をしっかりと認識しておくことが大切です。 条件比較、何を見る? データの比較を行う際は、本当に同じ条件で比較できているかどうかを確認する癖を身につける必要があります。なぜ複数のデータを比較するのか、比較から何が読み取れるのかを常に考えることが求められます。例えば、既存店舗における業績、顧客属性、サービス満足度のデータを用いる場合、その店舗の改善ポイントや、他店舗で活用できる内容を明らかにすることが重要です。また、将来予測に際しては、既存店舗のデータ分析が正しく目的を果たし、正確な判断につながることが、1年先の店舗運営における仮説や予測の精度向上、そしてリスクヘッジに直結すると考えています。 会議で何を共有? 会議や立ち話などの中で分析に関する話題が上がった際も、まずは紙一枚に目的、期間、どのようなデータが必要か、既存のデータなのか、どの部分から入手可能かをまとめることが大切です。その上で、依頼者と意見をすり合わせながら進めることが効果的です。 定性データは役立つ? また、定性データの活用についても重要な視点です。仮説設定の根拠や課題確認のため、まずは定性データに目を通す機会を十分に設けることが求められます。 AI活用の注意点は? 現時点では、AIの活用は基本的に注意が必要ですが、関係のない自作データなどを用い、どのようなデータの見せ方が効果的かを試行するなど、活用の視点から取り組んでみると良いと感じています。

データ・アナリティクス入門

仮説思考で未来を切り拓く

仮説思考はどう? 今週は、仮説思考の重要性と、仮説を立てる際の具体的なポイントについて学びました。仮説とは、まだ十分に明らかでない論点に対して一時的に答えを設定し、それを行動や検証の出発点とするものです。単なる思いつきではなく、論理的な根拠に基づいた取り組みが求められると実感しました。 複数の仮説は必要? 仮説を立てる際は、一つに絞るのではなく、複数の仮説を用意することが大切です。それぞれが漏れや重複なく、論点を網羅していることが求められます。また、データを収集する際には「誰に」どのように聞くかという視点を持ち、主観や偏りのない情報を得る工夫が必要だと感じました。 仮説の効果は何? 仮説思考の意義は、検証マインドの育成や、発言・提案の説得力の向上、問題に対する関心の深化と主体的な行動、判断や対応のスピードアップ、そして行動の精度向上にあります。これらは、実際の業務に直結する価値ある視点であり、感覚や経験だけに頼らない論理的な思考が、結果として仕事の質を高めると実感しました。 トラブルにどう対応? 特に、現場でトラブルや進捗の遅れが発生した場合には、「なぜこうなっているのか?」という問いかけから複数の仮説を立て、原因を洗い出すことが有効だと感じました。例えば、工程が遅れていると感じた際に「人員が不足しているのではないか」「機器の稼働率が低下しているのではないか」「必要な資材が届いていないのではないか」といった仮説を言語化し、関係者と共有することで問題解決に近づけると考えています。 安全面はどう考える? また、現場で安全面に関する小さなヒヤリハットが発生した場合にも、単なる報告に留めず、「なぜ起きたのか?」という問いを立て、複数の仮説に基づいて現状を確認し、改善策を具体的に考えることが重要です。定例の会議や社内報告においては、結論のみならず、その背景にある「こう考えた理由=仮説」のプロセスを伝えることで、より説得力のある報告や提案が可能になると思います。 どう改善していく? 今後は、現場で何らかの問題に直面した際に、まず論理的に仮説を立て、それをもとに検証し、改善していくという思考の流れを、日々の業務に積極的に取り入れていきたいと考えています。

デザイン思考入門

顧客の声で変わる営業の未来

新たな支援策とは? 営業力を支援するため、従来の販売視点ではなく、顧客のインサイトや潜在的な課題発掘に焦点をあてた営業活動のプロセスについて考察しました。まず、顧客が知りたいと思う情報提供として、営業が把握している各顧客の業務や作業の顕在課題に対し、公開情報ではたどり着かない新たな解決策を提案します。たとえば、ある企業が進めるデジタル化では、従来の方式に潜む無駄を見出すといった視点です。 解決方法に疑問は? 次に、顧客が固執している解決方法に疑問を投げかけ、従来とは別のアプローチを示すことで共感を得る試みがあります。実際の現場では、必ずしも全面的なシステム導入に固執せず、コミュニケーションの改善による生産性向上といった選択肢も提示されています。 効果はどう現れる? また、共感が得られた段階では、提案した解決策のROIなど具体的な実施効果を明確にし、実際にその方法がもたらす成果を数字や事例で示すことが求められます。その上で、解決策を自社の状況に置き換えてイメージできるよう、具体的なストーリーテリングを用い、顧客自身の課題として捉えてもらう工夫がなされています。 合意形成はどう? そして、最終的には提示した解決方法について、顧客と合意形成を図ることが重要です。この時点では自社の製品やサービス導入は必ずしも前提とせず、まずは解決策そのものへの合意が得られることが目的となります。 顧客関係の維持は? また、実践には至っていないものの、販売商品の訴求以前に、顧客との関係性を維持し、課題に寄り添う姿勢が重要であると考えます。こうした取り組みにより、営業は顧客に新たな気づきを提供できると同時に、営業自身の心理的安全性も担保されると感じます。実際、営業職はプレッシャーに強いという固定観念がある一方で、日々の業務の中で自省や試行錯誤を行っているのが現実です。 検証プロセスは? さらに、プロトタイプ作成の際には、ユーザーの本質的な課題を解決することが最も重要です。対象者が共感を失わない課題設定に基づき、実際のユーザーの声を取り入れて改善を繰り返すことで、限られたスケジュール内においても効率的な検証プロセスが実現できると感じました。

戦略思考入門

規模と範囲の経済性で未来を拓く

規模と範囲は何? 規模の経済性と範囲の経済性についての理解を深めました。 効果はどう現れる? 規模の経済性とは、生産量が増えるにつれて、1単位当たりの生産コストが低下する効果を指します。一方、範囲の経済性は異なる製品を同じ設備や人材で生産することにより、コストを削減できる効果です。これらの概念は企業が大規模化や事業多角化を考慮する際、メリットやシナジーを考える上で重要です。 例外はあるの? ただし、規模の経済性が当てはまらない場合もあります。例えば、生産量が過剰になると管理コストが増加したり、設備が老朽化して稼働率が低下したり、需要が限定的で大量生産のメリットが得られないこともあります。同様に、範囲の経済性についても、新製品のために新しい設備投資が必要だったり、新製品と既存製品に関連性がなかったりする場合には該当しません。 過剰は問題? つまり、規模や範囲を過剰に拡大すると、無駄なコストが発生し経営が非効率になる場合があります。そのため、需要動向や自社の経営資源を考慮し、適切な規模と範囲を見極めることが重要です。 効率はどう実現? 現在の部署では、実店舗のバックオフィス業務や間接業務の移管を受けており、その効率化と高品質化を進めています。100店舗で10工数かかる業務をただ1000工数で受け持つのではなく、習熟効果や自動化を活用して500、400と圧縮することで効率化を図っています。これからも規模の経済性を活かし効率化と高品質化を追求していきます。また、同じオフィス内で行うことで範囲の経済性も効かせられないか検討しています。 新たな提案のヒントは? 新規業務においては未知の領域に触れる機会が多くなり、顧客や競合他社も増えています。そこで、これまで学んできたフレームワークを活用できると感じています。新規業務の提案を行う際には、市場・競合・自社の情報整理を行い、顧客設定やゴール設定を明確にし、定量的な情報を基に説得力のある移管提案を目指します。 経験はどう重ねる? 現状では、フレームワークの有効な活用はもちろん、使用頻度もまだ不足しているため、まずは経験を積むことを重視して業務に取り組んでいきます。

リーダーシップ・キャリアビジョン入門

学びの軌跡が未来を照らす

本当に大切は何? 偶然、自分が仕事で何を大切にしていきたいのかを自問する機会があり、明文化された項目も違和感なく受け入れることができました。しかし、考えた結果を実際に行動に移すためには、内面と外部からの両方のきっかけが必要であり、相応のエネルギーを要すると感じました。したがって、来たるべき時に備え、平時からじっくり考え認識しておくことが大切だと思います。 キャリア成長の秘訣? また、キャリアをデザインして行動を起こす過程には、その後の生き抜く期間があり、その中で新しい発想や取り組みを身につけるという考えがありました。現在の自分はまさにその段階にあり、日々の業務と本講座での学びから得られるものを、どれだけ自身の成長に繋げられるかを意識していきたいと考えています。 フィードバックは必要? さらに、過去の経験から、能力不足が原因であってもフィードバックなしに業務を任された時の徒労感やモチベーション低下を痛感しました。相手に応じたフィードバックと次の課題設定は、上司と部下双方にとって重要であると実感したため、日常的なコミュニケーションを通して相手との関係性を構築していくことが必要だと感じました。 部下の動かし方は? キャリアアンカーの自覚とキャリアサバイバルの理解は、自身のキャリアはもとより部下のモチベーション管理にも有効であると考えています。チームメンバーのやる気の源泉を把握し、プロジェクトがどのような方向に進むかを予測するための知識やマインドも、アドバイスの一環として備えておきたいと考えています。まずは、日常のコミュニケーションを通じてそれぞれの考えを理解し、業務を通して仕事の進め方や特性を把握。得た情報をどのように活用するか、体系的な理論やそれに沿ったキャリアパスと照らし合わせて自分なりの意見を持つことが大切だと感じました。 リーダーの見る目は? 私は小規模なグループのリーダーとして、メンバー一人ひとりの顔や仕事ぶりを把握しやすい環境にあります。そのため、大規模なプロジェクトのトップを経験された方が、全員を細かく見ることが難しい中でどのような点に注意し、メンバーのマネジメントを行っていたのかをぜひお伺いしたいです。

データ・アナリティクス入門

細かい分析が未来を創る

原因をどう捉える? 問題の原因は、全体のプロセスを細分化して考えることで把握しやすくなります。原因を明確にするためには、各工程ごとに何が起こっているかを順を追って分析することが有効です。 解決策は何だろう? 一方、解決策を検討する際は、ひとつの案に固執せず、複数の選択肢を用意して比較することが大切です。判断基準を設定しておくことで、より説得力のある解決策にブラッシュアップすることが可能になります。また、本質的な施策を比較検討する際には、A/Bテストが有効です。比較したい要素を明確にし、他の条件をできるだけ揃えることで、テスト結果を効果的に実施策へ反映させることができます。 数値分析はどう見る? 事前の動画では、WEBマーケティングの分析においてアクセス数(ページビュー、ユニークユーザー、流入数)、サイト内行動(ページの回遊数、平均滞在時間、直帰率、再訪問率)、広告効果(クリック率、CPA)、および効果測定(コンバージョン)といった数値の重要性が紹介されました。現代のマーケティング環境では、顧客の購買体験がSNSの影響で複雑化しているため、マーケティングミックス(4P)の視点も必要不可欠です。 仮説はどう組み立てる? また、仮説の立て方については、まず知識を広げることで情報を耕し、そこからラフな仮説を作成するという大きな2ステップが重要だとされています。さらに、5Aカスタマージャーニーのフレームワークを活用することで、サービスとの出会いからファンづくりまでの流れを効果的に生み出すことが可能になります。 テストの効果は? 商品の活用状況が悪い場合や解約が増加しているときの対策としては、ポップアップでの案内や電話窓口の資料の強化といったパターンに頼りがちです。しかし、日常的にアプローチ(訴求面)のテストを実施しておくことで、急な数値低下に直面した際にも、事前のテスト結果を活かして迅速かつ効果的な対応が可能になります。現在、A/Bテストを実施している場面もありますが、担当者の発案に頼るのみで、年間で数回程度に留まっています。今後は、各施策の企画段階からテストの仕込みを意識することで、より計画的な改善が期待できるでしょう。

データ・アナリティクス入門

グラフ活用で成果を高める方法

グラフの読み方は? ■グラフの解釈と仮説の立て方 グラフを用いる際は、まず読み取りたい内容に合わせて最適な形式を選びましょう。グラフを観察する前に予測を立てることで、分析の方向性を明確にします。分析方法には、特徴的な部分を注目したり、複数のデータを比較して差異を見つけるなどのアプローチがあります。この過程で、解釈と仮説を同時に立てると効果的です。 R&Dチームの成果をビジュアル化する際には、チーム別に成果物の数をヒストグラムにし、偏りや詰まりを確認しましょう。この情報を基に各チームへのフィードバックを行い、改善につなげます。 データ表現の工夫は? ■ビジュアル化のヒント データビジュアル化では、代表値や散らばりに着目します。代表値の設定においては、データに応じて使い分けが重要です。 - 単純平均は、データ全体の総和をデータ数で割る方法で一般的に多く用いられます。 - 加重平均は、影響力の異なるデータに重み付けを行って平均を取る方法です。 - 幾何平均は、主に変化率や比率を扱う際に使用されます。 - 中央値は、外れ値に影響されにくいため、データの中心を把握する際に便利です。 さらに、散らばりを把握するためには標準偏差を用います。標準偏差はデータのばらつきを測る指標で、値が大きいほどばらつきも大きいことを示します。大きく逸脱したデータは重要なポイントかもしれないため、注意が必要です。 データが正規分布に近い場合、95%のデータが標準偏差の2倍以内に収まるとされています。この特性を活用して標準偏差を逆算する方法もあります。 最後に、プロジェクト参加者の満足度を測る際には、参加期間に応じた重みづけを行って加重平均を計算し、その結果を適切なグラフで示すことで満足度の傾向をわかりやすく伝えられます。 仮説検証の流れは? ■解釈と仮説の流れ まず、チームごとに成果物を数え、それを表にして視覚化します。次に、そのデータから予測を立て、詳細な解釈を行った上で仮説を形成します。この仮説をチームにフィードバックし、インタビューなどを通じて実態と照らし合わせることで、仮説を検証します。これにより、チームやプロジェクトのさらなる改善へと導くことができます。
AIコーチング導線バナー

「設定」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right