データ・アナリティクス入門

問題解決を極める!MECE活用法

問題解決プロセスはどうする? 問題解決のステップであるWhat/Where/Why/Howを実施する際、MECE(モレなくダブりなく)に留意して問題を切り分け、明確化することは、普段の業務でも自然に行っています。しかし、これを改めて整理すると、より理解が深まることを実感しました。 部下の問題対応をどう支援する? 実務においても、問題に対してモレなくダブりなく切り分けて明確化し、要因分析を行えているかを確認したいと考えています。部下から日々さまざまな問題が報告される中で、この点が確実にできているかを検証し、対策をまとめるサポートをしていきたいと思っています。 部門内の案件をどう分析する? 直近で部門内で問題となっている案件を選び、それぞれの担当者がどのように問題の要素分析を行い、どのような検討を経て対策を導き出しているのかを確認したいと考えています。特に要素分析の段階でMECEをしっかりと実施できているかを重視して見ていきたいです。

クリティカルシンキング入門

問いが変える私の学び

どうして問いが大切? 物事を進める際は、まず「問いは何か?」からスタートすることが重要です。人は問いがあると、自然と答えを出したくなります。問いを明確にすることで、余計なことを考えずに論理的思考に専念でき、問題解決に向けた適切なアプローチが可能になります。今まで、相手が求めることを何となく捉えて答えを提示していた方法から、問いと答えをはっきりさせることの重要性を再確認しました。 本当に必要な問い? さらに、お客様や上司からのヒアリングの際には、表面的な要望ではなく、本当に求められている「問い」を明確にすることが大切です。こうした問いをもとに、主張と根拠を整理して提案することで、信頼性のある回答を提供できます。また、実際の現場では、お客様からの問いをノートに記録し、ピラミッドストラクチャーを用いて整理する方法が活用されています。そして、対面で急な質問があった場合にも迅速に対応できるよう、イシューリストを作成するなど、柔軟な対応が求められます。

デザイン思考入門

顧客と社員の声が未来を開く

なぜ人間中心なの? プロダクトアウトではなく人間中心の考え方に、とても印象を受けました。特に、先生が事例として挙げてくださった冷蔵庫の機能の説明を通じて、同様の傾向が他の製品にも見受けられることに気づきました。誰をターゲットに設定し、どのニーズに応えるかという視点の大切さを再認識する内容でした。 どうお客様に寄り添う? 現在、社内では組織改編を進めています。マニュアルやルールに頼りすぎるとスタッフの思考が停止してしまうことを懸念し、まずはお客様にどのようなサービスを提供すべきかを目的から再定義することにしました。これに基づき、スタッフが能力を最大限に発揮できる業務フローの整備を目指しています。まずはお客様の声を集め、現行の業務フローにおける課題を洗い出した上で、現行のサービスやその提供方法がターゲット層に適しているかどうかを確認し、スタッフからも意見を聴取する予定です。顧客と社員の両方の意見を取り入れ、本質的な問題解決に努めたいと考えています。

クリティカルシンキング入門

イシューの見極めで職場の問題解決を進化させる

イシューの判断はどうする? 物事の本質的な問題である「イシュー」を適切に判断することが重要であり、適切に判断しないと対処を誤ってしまうことを学びました。また、常に状況が変化するため、問いを持ち続けることが必要であることも学びました。 問題解決に活かす工夫は? 職場の部下から、社内外で発生した問題やトラブルについて相談を受ける機会が多いため、それに対する具体的な指示やアドバイス、再発防止や改善策を考える際に、今回学んだ「イシュー」の考え方を活用できると思います。 質問で状況をどう把握する? 発生した問題やトラブルの対処について相談を受けた際には、自分自身がその「イシュー」の見極めを誤らないよう、学んだことを思い出しながら考えるようにしたいと思います。また、そのためには、相談を受けた時に現在の状況を正確に理解するための質問も工夫する必要があると感じました。どのような質問をすれば正しい情報を得られるのかを意識するようにしたいと思います。

データ・アナリティクス入門

結果に響くMECE学びのヒント

結果を重視する理由は? 問題解決にあたっては、要因ではなく結果から考える姿勢が大切であると学びました。また、ロジックツリーを作成する際、MECE(漏れなく、ダブりなく)を意識することの重要性も実感しました。特に、厳密さ自体を目的とせず、第3階層程度で異なる要素を加えても構わないという点は、意外性があり印象に残りました。 メール分析のポイントは? 顧客向けキャンペーンメールの分析では、属性をMECEに分類することで、有意差のある項目を見つけ出すことが可能となります。これにより、意味のある仮説が立てられ、有意な差を検証できるA/Bテストの実施につながります。 属性戦略はどんな風に? 今後は、各属性がどのような方法で、どれほどの期間で入手可能かを確認した上で、MECEに分類し、ロジックツリーで整理することが必要だと考えています。このプロセスを通じ、特に注力すべき属性を明確にし、それぞれに応じたメール配信の戦略へと展開していきたいと思います。

データ・アナリティクス入門

実践で磨く論理的仮説力

復習会で何を学んだ? 今週は、学んだ内容を振り返る復習の会が行われました。授業内での演習では、これまで学んだ知識が実際の場面で役立つことが多く感じられましたが、フレームワークの定着が不十分なため、仮説を立てる際に無計画に仮説を出してしまうこともありました。しかし、即座にフィードバックを受けることで、その意見が定着の助けとなり、次のステップに進む良い機会となりました。 業務でどう活かす? 学んだ内容は、業務での問題解決や意思決定に大いに役立ちそうです。例えば、部門で課題が発生した場合、データ分析を用いて仮説を構築し、フレームワークで整理することで、明確な解決策を導き出しやすくなります。また、新しいツールや業務プロセスの導入時には、評価軸を設定し、客観的に比較する方法が意思決定の支援に有効です。今後は、データ分析技術やフレームワークを日常的に意識して活用し、論理的な仮説立案を習慣付けることで、業務の説得力と成果を高めていきたいと考えています。

デザイン思考入門

限られ時間に咲く学びの花

どうして時間が足りない? 日々の生活の中で感じる課題は多岐にわたりますが、働く社会人としての立場から見ると、特に「時間が十分にない」ということが根本にあると感じます。このため、仕事以外の活動や用事が後回しになり、常に何かに追われているような感覚に陥るだけでなく、限られた時間で無理をしてしまい、寝不足や不規則な生活などの問題が生じています。現状では、仕事以外のタイムマネジメントやタスクマネジメントに課題を感じるものの、その解決策について今すぐ結論を出す必要はないと認識しています。 解決できなければどうする? また、定性分析を通じて課題の具体性を明らかにする取り組みの中で、「その課題が解決されなかったとしたら、どのような回避的行動に出るか?」という考え方に特に興味を引かれました。このエクササイズにより、課題が解決された場合と解決されなかった場合の両面を具体的にイメージでき、それが新たな解決方法を導く上で非常に有用な発想につながると感じました。

データ・アナリティクス入門

グループで広がる学びの輪

グループワークの価値は? グループワークで、普段の仕事の進め方や新たな学びの方法について話し合う機会があり、その経験を講座終了後も活かすことができたのは大変良いと感じました。 振り返りの意義は? ライブ講座では、これまでの学びを振り返ることができましたが、再度復習したいという思いも残りました。 どんな分析が役立つ? また、自分が普段担当していない手法であるファネル分析やA/Bテストについて学ぶことができ、新たな発見となりました。グループワークでは、原因の仮説を立てる際に3C分析を活用し、課題解決のフレームワークをいくつか身につけておくことで、仮説を立てやすくなると実感しました。 フレーム習得は難しい? 今後は、代表的な課題解決のフレームワークを3つ程度覚え、常に思考の一部として活用できるように努めたいと考えています。最初は難しいかもしれませんが、思考の確認として、予めAIに質問・確認するステップを取り入れることにしています。

データ・アナリティクス入門

現状理解の大切さを知る分析の旅

問題の現状理解には何が必要? 私は、これまで「どうやって解決するか」にばかり意識が向いてしまい、問題の「現状を理解する」ための思考が不足していることに気づきました。分析には常に比較が必要であり、現状と理想との比較が重要だということを、今回の学びで強く感じました。 課題抽出と仮説立ての手順 課題を抽出し仮説を立てたあと、データを集めてさらに深く分析するという手順を大切にし、データに向き合いたいです。以前は課題解決のためのデータチェックを誤ることがありました。そのため、ロジックツリーの思考を身に付ける必要があると感じています。 ロジックツリーはどう活用する? まずは手元にあるデータの詳細な分析を行うために、ロジックツリーを具体的に図面として描いてみようと思います。その際、必要となる切り口をMECE(Mutually Exclusive, Collectively Exhaustive)に基づいて細かく分け、誤りなく課題を抽出したいです。

データ・アナリティクス入門

分析が楽しくなる仮説の立て方と実践例

適切な比較対象を選定するには? 分析の本質は比較であり、適切な比較対象を選定することが重要だと学びました。また、問題解決には、「What, Where, Why, How」の4つのステップがあることも理解しました。今後は、ただやみくもに分析をするのではなく、当たり前ではありますが、仮説をきちんと立ててから実施することを心がけていきたいと思います。 秋の実証実験で何を活かすか? 秋から始まる実証実験の結果を、今回学んだ内容を活かして分析していきます。特にアンケート設計を実施する必要があるため、事前に仮説を立て、実証実験で得たいデータが得られるような設計にしていこうと思います。 アンケート設計の考慮点は? 9月中にはアンケート設計を行います。実証の目的や今後に繋げていくために欲しい情報などをよく考えた上で設計を行うことを心がけます。また、今回学んだ知識を忘れないためにも、業務の中で意識的に使用していくことを心がけていきたいと思います。

クリティカルシンキング入門

チームの課題発見と解決の秘訣

何を考えるべき? 考えを始める前に、何を考えるべきか、またどんな問い(イシュー)に答えを出すべきかを明確にすることが重要です。問いを具体化し、打ち合わせ中は常にその問いを意識することで、間違った答えや見当違いな答えを避けられます。 進捗はどう把握? 業務の取り組み状況を把握する際には、進んでいるチームと進んでいないチームを比較する必要がありますが、これは単に取り組み状況を定量的に確認するだけでなく、定性的にも捉えることが求められます。特に、取り組みが進まない理由を探る際には、店舗の大きさ、年齢、入社時期など、さまざまな角度から深く分析することが肝要です。 次年度方針はどう? 現在、次年度の方針を策定中ですが、この策定には今年度立てた目標に対する達成状況が影響します。目標の再設定や目標達成のための研修、会議の内容など、過不足を様々な角度からデータを分析し、1年後には自身の成長が実感できるような方針を策定したいと考えています。

データ・アナリティクス入門

新たな視点で挑む問題解決術

仮説はどう活かす? 今回の学びで、仮説は結論を導くだけでなく、問題解決に役立つ視点としての「問題解決の仮説」が存在することに気づきました。また、仮説には時間軸があることや、複数の仮説を立て網羅性をチェックすることで、偏りのない視点を保つことが大切だと理解できました。 データはどう扱う? また、データ収集においては、新たなデータを集めることに注目する一方で、手元にある既存のデータや一般に公表されている情報を活用する分析が軽視されがちである点に気が付きました。新しいデータの収集は楽しい面もありますが、一方で入手が難しい場合もあるため、状況に応じた柔軟な対応が求められると感じました。 手法はどう広げる? 現在、業務効率化のためにデータ収集を通じて行動様式の検証に取り組んでいますが、今後はデータ収集に限定せず、インタビューやアンケートなど多様な手法を組み合わせることで、より効果的な業務改善を目指していきたいと考えています。

「解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right