クリティカルシンキング入門

イシューを見極める思考の技術

なぜイシューは重要? イシューの重要性を強く感じました。自分では問題を捉えているつもりでも、実際にはそれが曖昧になったり、方向性が逸れてしまう危険性があることを動画を通じて確認しました。直感や衝動に頼って進めると問題解決には結びつかず、常に「何が問題か」を意識しながら進めることが重要だと実感しました。 どうやって留意する? 一貫してイシューがブレないよう留意し、全体を俯瞰し「なぜか」「本当か」を確認しながら進めていきたいと思います。 判断は正しく? 「何を選ぶか」といった政治的な判断が求められる際には、イシューを意識することで、軌道が逸れずに適切な意思決定が可能になると考えます。 意見の相違はどう? 複数の意見がある中で、すべてを満たそうとする思考の癖があり、解決策の方向性が一貫しないことがあります。このような意思決定の場面では、イシューが逸れていないかを確認したいです。また、イシューを共有することで効率的な解決を図ったり、意見の不一致を避けることができるのではないかと考えています。

クリティカルシンキング入門

課題解決力を高める思考術講座

思考の偏りをどう克服する? ビジネスシーンで自分の考えが通らないと感じることがありますが、これは自身の思考の癖による偏りが原因となっていることが多いです。しかし、この偏りは訓練によって後天的に改善できるものであり、カバーも可能です。単に本を読んでアウトプットするだけではなく、他者との議論を通じて初めて身につくものだと感じます。 クライアントへのアプローチ法は? クライアントが抱える悩みにはしっかりとした課題解決策を提示し、そのアイデアを採用してもらいたいと考えています。また、セミナーの内容が本当にクライアントの課題解決に役立っているのかを確認し、クライアントに提供する時にはできるだけ購入してもらえるようなアプローチを模索しています。 解決策をどう構築する? クライアントの課題とその解決策を多角的かつ網羅的に捉えることで、より納得のいく解決策の導入を推進したいです。これを実現するために、自分の過去の経験だけに頼らず、ロジックツリーなどを活用して解決策をリストアップし、根本から見直すことが必要だと考えています。

アカウンティング入門

筋肉質な会社を作るための貸借対照表分析

貸借対照表の基本を理解しよう 貸借対照表で使用される用語とその意味を理解することができました。資産は会社の大きさを表し、純資産は骨格や筋肉に相当します。一方、負債は脂肪に例えられます。純資産の割合が高い会社は筋肉質な会社と言えます。また、貸借対照表はCTスキャンのように、会社の健康状態を表す指標です。事業の内容やコンセプトによって、貸借対照表の中身も変化します。 経営状況の分析方法とは? まず、自社の貸借対照表を確認し、その中身(項目)を基に自社の経営状況を分析します。次に、競合他社の貸借対照表を見て業界全体の状況や傾向を把握し、自社と比較します。これにより、自社の経営状況を相対的に分析することが可能になります。 効果的な予習・復習のポイント 講義の内容については、予習・復習の時間を30分以上設けます。また、アウトプットとして自社の貸借対照表を確認し、気づいた点や疑問点を書き出します。書き出した点については、自社内のアカウンティングに詳しい社員に聞き取り、アドバイスを求めることで自身の理解度を深めています。

クリティカルシンキング入門

新発見!あなたも学びの一歩

思考の癖をどう活かす? 議論を進める際には、各自の思考の癖を意識し、具体と抽象の両面からアプローチすることが重要です。例えば、共通項を見つけ出し、そこからアイデアを派生させることで、考えを広げる工夫ができます。また、視点、視座、視野を変えるために、どのような分類が可能かを常に考えると、議論が短絡的な結論に陥らないようにする効果があります。 戦略説明はどう進める? プロジェクトの方針や戦略を検討する場面では、上位者への説明や提案の際に、このアプローチが役立ちます。一度思いついた案が本当に最適か、他により良い選択肢はないかを議論し深めることで、資料作成時には筋道の通った説明と納得感のある内容を提供できるようになります。 多角的視点は何? また、議論する際は前提にとらわれず、異なる視点や切り口で考えてみることが大切です。議論した内容を他の人に確認してもらうことで、論理的に説明できるかどうかを確かめ、最終的な説明資料ではストーリー性や論理の整合性、何を伝えたいのかが分かりやすい構成を意識するようにしましょう。

データ・アナリティクス入門

数値で読み解く問題解決の道

本当の問題は何? 問題が生じると、すぐに解決策を講じたくなるものですが、まず「何が問題なのか」や「その原因はどこにあるのか」を明確にすることが重要です。何気なく動き出すと、的外れで効果のない対策に陥る恐れがあるため、「what」「where」「why」「how」の順に問題解決のステップを踏むべきだと感じました。 ギャップはどこにある? また、問題を特定する際には、望ましい状態(あるべき姿)と現状とのギャップに着目することがカギだと学びました。さまざまな数字に着目することで、そのギャップを具体的に把握できることも実感しています。 理想は本当に正しい? さらに、自身の業務を振り返ったとき、まず「あるべき姿」が明確に設定されているかどうかに疑問を感じる場面があると気づきました。ギャップの検証が可能な状態で理想の状態を決め、その認識を他者と共有しなければ、正確な問題解決は実現しにくいと思います。 今後の対策は? 今後は、この点を意識して取り組むことで、より効果的な問題解決に結びつけていきたいと考えています。

データ・アナリティクス入門

仮説で解く毎日の課題

仮説の意義は何? 仮説を立てる意義について改めて考える機会となりました。これまで、なぜ仮説を作るのかという基本的な問いに対して十分な検討を行ってこなかったと実感しています。 仮説の種類は何? 仮説は大きく2種類に分けられます。一つは、ある論点に対して仮の答えを提示する結論の仮説、もう一つは具体的な問題の解決を促進するための問題解決の仮説です。どちらの場合も、仮説を用いることで意思決定の正確さが向上し、重要な問題意識を高める効果があります。また、仮説をもとに検証プロセスを回すことで、行動のスピードアップや精度向上にもつながると考えます。 検証の進め方はどう? 特に、具体的な問題解決の仮説を立てる際には、「where(どこで)」、「why(なぜ)」、「how(どのように)」というフレームワークに基づいて検討することが有益だと感じました。このフレームワークは、業務に限らず日々の様々な事象に適用可能であり、毎日ひとつずつ仮説を考えることで、日常の幅広い問題に対して効果的な解決策が見いだせると期待しています。

クリティカルシンキング入門

視野を広げた新しいアイデアの生み出し方

思考を広げるために必要な視点は? 適切な方法で適切なレベルまで考えること。考えには偏りが生じること。これら3つの「視」を意識して物事を考えること。この3点を取り入れることで、普段の思考が広がり、より深い探究に繋がると感じました。 提案時に大切な3つの「視」とは? 新しいことの企画や提案をする際、特に3つの「視」を意識し、広く深く考えることが重要です。そうすることで、より具体的で多くの可能性を見つけることができます。また、判断を求められる時に、あらゆることを想定して未来を見据えた舵取りができるようになるでしょう。 新しいアイデアを活かすためにどうする? 新しいアイデアが浮かんだときには、3つの「視」を意識して思考を巡らせ、それに伴うデータなども適切に肉付けします。この際、自分の都合に偏らず、客観的に事実と結びつけることを心がけます。 客観的な判断のためにはどう分析する? 判断を求められた時も同様に、自分や自部署の都合にとらわれず、客観的に物事を分析し、未来を見据えた判断を下せるよう努めます。

クリティカルシンキング入門

データ分析で効果的な戦略を探るコツ

課題をどう掘り下げる? 根本的な課題を明らかにしなければ、一時的な対処で終わってしまい、効果的な対策が難しくなります。そのためには、データを活用し、データの切り分けにも注意を払って、直面する現状を把握することが重要です。原因を追及し、適切に根本的な課題を特定できれば、効果的な対策を考えることが可能です。 売上課題を探る? 売上の分析においてもデータ活用が求められます。次にどういったターゲットを狙って売上を拡大していくのか、現在の課題は何かを探るために利用します。売上を顧客グループごとに切り分けることで、顧客数に課題があるのか、あるいは顧客単価に問題があるのかを特定し、それに応じた戦略を立てることが重要です。 戦略と安全はどう? どのように売上を伸ばしていくのか、どのような対策をとるのかについては、自己分析による提案が求められます。また、ITセキュリティのトラブルが発生した際にも、問題の所在を一つ一つ切り分けて確認します。特に、複雑に絡み合ったケースであっても、それを混ぜて考えないようにすることが重要です。

データ・アナリティクス入門

データ分析で学び得た具体的な手法とは?

分析の心得から具体例へ これまでは主に分析の心得に関するマインドセットを学んできましたが、今週からは具体的な分析手法についての講義が始まりました。平均値が極端な数字(はずれ値)によって大きくぶれる可能性を知っていたものの、中央値を具体的に説明できる計算式が非常に参考になりました。 データビジュアライゼーションの活用法 現在、データビジュアライゼーションに取り組んでいるため、代表値と分布をうまく使って視覚的に「伝わる」図を作りたいと思っています。そのため、標準偏差と分布の使い分けも重要です。どの要素の数値を組み合わせるかという「切り口」が非常に重要だと感じています。 定性的と定量的の融合をどう図る? さらに、アウトプットの質と量が重要であるため、あらゆるデータに対して「分析できないか」という視点を常に意識しています。仕事上、定性的な感覚を重視していますが、そこにデータなどの定量的な裏付けを加えることが大切だと感じています。数値情報の取得が可能かどうかがネックになることが多いというのが、私の経験上の課題です。

データ・アナリティクス入門

見える数値が導く新たな発見

数値の見直しは? 昔から用いられている数字の指標は、単一の平均値で表現されることが多いため、別の数値の捉え方をすると、販売手法を変更した際に新たな発見や結論が導かれると感じました。 可視化の意義は? 最近はデータ量が増えたことで、可視化にあまり重点を置かなくなっていましたが、見えるものから得られる情報も、適宜プロセスに組み入れると有用だと思います。 評価視点を変える? 自分が現在行っているパフォーマンス指標についても、どの視点で実績を評価しているのかを意識し、他の数値の読み解き方が可能かどうか確認し、日々の業務に役立てたいと考えています。特に、これまで使用してこなかった幾何平均や中央値については、意識して活用するようにしたいです。 データ活用方法は? また、商品実績の追跡は頻繁に行っていますが、カスタマーデータの分析は十分ではなかったため、カスタマーデータを改めて商品実績の分析に生かすことで、より多くの情報が得られるのではないかと考え、本日学んだ内容を業務に活かしていく所存です。

戦略思考入門

規模の経済性を知る学びの瞬間

スケールの本質って何? 「スケールメリットを活かす」という言葉は、以前から漠然と「そうだよね」と感じていたものの、今回のGAiLを通じて、規模の経済性が成立する場合とそうでない場合があるという現実を初めて学びました。たとえば、総合演習での「大型ディスプレイに広告を載せたら集客できる」という短絡的なアイデアは、自身の業務の中でも無意識に行っている可能性があり、因果関係を正しく理解し説明することの重要性を改めて感じています。 生産体制、再考すべき? また、規模の経済性については、自動車業界のあるメーカーの例から、生産能力に見合った生産が行われず、かえって規模の不経済性が発生している現状を知りました。現状に適した生産体制の整備が必要であると理解しました。一方、範囲の経済性は、資源を人財と捉えることで、チームメンバーの選出や役割分担にも応用できると感じました。ビジネスの定石の都合の良い側面だけでなく、実行した場合の逆効果にも十分配慮しながら、経済性といった視点でビジネス全体を俯瞰することを常に心掛けたいと思います。

データ・アナリティクス入門

仮説実証で未来を切り拓く

どうやって目的を決める? 目的や目標を明確に定めた上で、必要な判断を下すための着眼点を学ぶことができました。事象におけるステップや因果関係を意識し、まずは分析の仮説を立て、その後実際のデータ解析を通じて検証しながら、問題を絞り込む手法が有効であると理解しました。 どう検証すれば確実? 問題解決型の業務においては、事前に予想される因果関係を各種ツールを用いて整理し、データで検証することで、より正確な判断を短時間で行うことが可能だと感じています。一方、課題創造型の業務では、目的と背景を基にツールなどを活用して仮説を組み立て、実践と検証を繰り返すことで、より良い業務実施につなげる方法があると考えます。 どう計画を固める? 改めて、まずはしっかりと目的と目標を決めることが重要だと感じました。関係者を巻き込み、十分な時間をかけて納得のいくプランを作り上げ、その上で複数の仮説を立てる必要があります。また、各種分析手法を実践する中で自分のスキルと経験を徐々に深め、より多角的な判断ができるようになりたいと考えています。
AIコーチング導線バナー

「可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right