デザイン思考入門

予期せぬ挑戦で深まる学び

経営層とのズレは? 総務の分野では、明確なゴールや課題意識が設定された状態で業務が依頼されることが多く、経営層と現場の考え方のズレを常に意識しながら問題解決に取り組む重要性を感じました。経営側が示すのは課題定義までであるため、実際に試作品を作る過程で予期せぬ問題が発生することを体験し、学びが深まりました。 AIデザインはどう? 生成AIを活用してデザインを作成する試みは、予想以上に難しいと感じました。自分のイメージを正確に反映させるためには、プロンプトの使い方をさらに工夫していく必要があると感じています。また、思いもよらない結果が得られることもあり、試行回数を意識することが大切だと思いました。 試作の修正ポイントは? 加えて、生成AIの利用はもっと意識的な操作が求められる点、試作後に自ら修正箇所を見出す経験が得られる点、そしてデザイン思考入門で学んだ手法が、自分の予想を超える、または改善された成果を生み出す可能性があることを実感しました。

クリティカルシンキング入門

多視点で発見!学びの可能性

新たな視点の重要性は? 一度一見納得のいく答えにたどり着いた後でも、その答えが本当に正しいのかを疑う視点を持つことが重要だと思います。ほかの視点から再度考えることで、これまで気づかなかった事実に気付く可能性が高まります。また、要素を分解する際には、MECEの考え方に基づいてデータを重複なく漏れなく整理することが大切だと感じました。 どうすればリソース確保できる? また、サーバ保守業務に従事している私にとって、ユーザから届くリクエストの分析は日常的な作業です。一定時間ごとのリクエスト数を見ることで、日中と夜間で訪問者数の違いを把握でき、サーバの応答時間の計測を通じてシステムへの負荷状況を確認することが可能です。リクエストのトレンド分析により、将来的に必要となるサーバ台数の予測が行え、適切なリソース確保につながります。また、応答速度の追跡を通じて、サーバが限界を超えるリスクを事前に察知し、システムダウンを防止するための対応策を講じることができると感じました。

データ・アナリティクス入門

思考が変わる!分析への新挑戦

新たな視点って何? 短い期間ではありましたが、今まで知らなかった新たな視点と、分析の基礎的な部分に取り組む機会を得ることができました。この経験により、従来エクセルでグラフを作成することだけが分析だと思っていた意識を改める大切なきっかけにもなりました。 切り口をどう見る? また、改めて切り口や最終的に求める結果を明確に認識する重要性を実感しました。言われたことをこなすのは当然ですが、それだけでなく、どのような追加の分析が可能か、現在の活動がフレームワーク上で重複していないかを考えるようになりました。 未来の分析はどう? さらに、サイトなどを通じて他の場所での売り上げ分析の出し方を学び、今後自分が目指すべき方向性を掴む機会にもなりました。分析は過去のデータを用いることが一般的ですが、未来を見据える分野での活用を考える際、歴史上の革命と呼ばれるタイミングで起きた出来事を参考にすることで、役立つ知見を得られるのではないかという考えに至りました。

データ・アナリティクス入門

仮説とデータで切り拓く未来

データ分析で何を学ぶ? 今週は、データ分析による業務課題の可視化や、仮説構築から分解・深掘り、施策立案に至る一連の流れを体系的に学びました。全体平均だけでは見えないグループごとの傾向把握の重要性や、セグメント別分析を通じてボトルネックやインサイトを抽出するプロセスが特に印象に残りました。具体的なケーススタディを通して、満足度や成果指標を分解することで課題の本質に迫るアプローチを体験できたことは非常に有意義でした。 営業分析をどう活かす? また、今回学んだ分析プロセスや分解思考は、自身の業務、特に営業活動にも応用可能だと感じました。たとえば、営業メンバーの訪問件数や提案内容、業界別の成約率、失注理由などのデータを収集・分解し、チームや個人、顧客属性ごとに傾向を分析することで、属人的な営業から再現性の高いプロセス型営業への転換が期待できます。さらに、成績上位者の営業プロセスを可視化してナレッジを共有することで、組織全体のレベルアップに貢献できると考えています。

データ・アナリティクス入門

平均だけじゃ見えない学びのヒント

平均値の弱点は? ビジネスや日常生活のさまざまな場面で代表値として利用される平均値ですが、実は大きな弱点があります。平均値はデータのばらつきを反映しておらず、同じ平均値でも、データの大半が平均値に近い場合もあれば、極端に大きな数値と小さな数値で構成され、平均に近い値が存在しない場合もあるのです。 重要要素は何? 苦情処理以外でもデータを活用する可能性は十分にあります。これまで、インフォメーションのヒットワールドでは似たような事例がいくつか見受けられましたが、どの要素が最も重要なのか、またすべてのデータを採用するのは現実的ではないと感じています。したがって、状況に応じてデータの加工が求められるのでしょう。 問い合わせ改善は? 一時的に問い合わせ内容を収集し、お客様が特に関心を寄せる内容を反映することで、その部分のサービス提供に工夫を凝らす考えです。さらに、第三者にこのデータを提供し、PADなどに入力することで、案内の効率化が期待できるでしょう。

戦略思考入門

戦略実践で武器に変える学び

戦略思考はどう整理する? 戦略思考とは、明確なゴール設定と、その達成のための戦略を検討するプロセスを意味します。まずは現状を正しく把握し、目標までのギャップを理解することが重要です。さらに、フレームワークを活用して思考を体系的に整理し、実行すべき事項とそうでない事項を判断軸で区別することがポイントだと改めて整理できました。 学びはどう身につく? また、Week1からの振り返りの中で、学んだ内容が既に忘れられている点に気付くとともに、忘れる=身についていないという認識に至りました。そのため、意識的に実践を重ね、自分の武器として定着させたいと考えています。 業務実践はどう進める? せっかく学んだフレームワークも、業務で実践しなければ忘れてしまう恐れがあるため、常に活用可能なフレームワークはないかを意識して実践していくつもりです。今後は、新規受注の成功事例や失注事例を、3C分析やSWOT分析を用いて検証し、次の打ち手の検討に結び付けたいと考えています。

リーダーシップ・キャリアビジョン入門

チーム輝かすエンパワメント力

権限移譲の秘訣は? エンパワメントでは、権限移譲とメンバーのやる気の維持を両面から考えることが大切だと改めて感じました。成果の向上とメンバーの育成を両立するために、各人の業務経験や知識、意欲、さらには時間的な余裕を十分に理解し、どこまで委譲するかを明確にする必要があると感じています。目標設定や計画の立案に際しては、6W1Hを具体的に示すことで、より実行可能なプランへと落とし込むことができると思います。 話しやすい雰囲気は? また、エンパワメントのプロセスを円滑に進めるためには、自分自身に余裕を持ち、相手にとって話しやすい雰囲気を整えることも重要です。目標や進捗の管理に関しては、理解が不十分な点や不安な部分があれば丁寧に説明し、それらの課題を引き出したうえで意義や目的を共有することが、結果として相手のモチベーションを高める効果があると考えています。毎週の1オン1ミーティングでこれらを確認する習慣も、エンパワメントを成功に導く一つの工夫だと思います。

戦略思考入門

受講生が語る戦略のひととき

ターゲットの重要性は? 自社や競合の状況を整理し、まずはターゲットとなる顧客を明確に定めることが基本です。ターゲット顧客の視点で、どの施策が意味のあるものかを検討し、差別化すべき相手を意識することが重要です。 持続可能な戦略は? その上で、差別化のための施策案においては、実現可能性や持続性についても十分に考える必要があります。戦略の検討は、顧客ニーズに合わせた具体的なアプローチとなるよう心がけます。 ポジショニングは? また、戦略立案の際には、ポーターの基本戦略を活用してポジショニングを明確にし、VRIO分析を通じて自社の強みを活かしながら差別化を図ることが求められます。 実践する理由は? さらに、クライアントとの対話においては、ありきたりなアイデアではなく、今週学んだポイントを実践し、深く広く検討する姿勢が必要です。この経験を機に、これまで十分にできていなかった自社分析をしっかりと行い、今後の戦略策定に役立てていきたいと考えています。

マーケティング入門

徹底解剖!イノベーション成功の秘訣

新商品の成功要因は? 新商品を発売する際の成功要因として、イノベーションの普及要件に基づいた考察が非常に参考になりました。具体的には、従来のアイディアや技術と比べた「比較優位性」、生活への適合性、使い手にとっての「わかりやすさ」、試用できる「試用可能性」、そして採用状況が明らかになる「可視性」の5つのポイントが大切であると感じました。 差別化の罠に注意? また、初めは顧客のニーズから商品開発を進めるものの、競合が同じ商品を打ち出すことで、顧客視点が見失われる「差別化の罠」に注意が必要だと学びました。すべての人に受け入れられる商品を作ることが困難な現代では、限られたリソースを最大限に活かすためにも、セグメンテーションとターゲティングの手法が不可欠だという点にも納得しました。 戦略はどう練る? これらの学びをもとに、自社で展開する新サービスのプロモーション戦略や支援策を検討する際に、より具体的かつ効果的な施策を考えていければと感じています。

データ・アナリティクス入門

A/Bテストで成果を見える化!

真因はどこにある? プロセスを分解し、問題がどこにあるのか、さらにその真因を掘り下げるアプローチは非常に重要です。このような手法により、具体的な対策が見えてきます。特に、A/Bテストを用いた評価方法は、複数の施策を公平に比較するために有効です。ランダム性を持たせつつ、できるだけ条件を同じにして施策をリリースし、実際の結果を基に評価することが求められます。 課題はどう捉える? 実際の業務では、A/Bテストを行う機会は少ないかもしれませんが、顧客の課題をプロセスに分解し、その真因を探りながら仮説を立てることは、多くの場面で有効です。このような手法で、顧客の表層的な課題だけでなく、プロセスの詳細まで深く掘り下げることが大切です。 データは信頼できる? そのためのヒアリングやディスカバーを繰り返すことで、有意義なデータを収集し、場合によっては実地での業務サーベイを行うことも検討します。これにより、定量的なメリットの根拠を構築することが可能になります。

クリティカルシンキング入門

成功するプレゼンの秘訣を学ぶ旅

論理的な説明の重要性は? 物事を他者に伝える際には、論理的な説明の組み立てを考慮する必要があります。自分の思いだけで伝えると、本質が相手に伝わらないことがあります。そのため、ピラミッドストラクチャーを活用し、本質から理由を導き、理論的に会話や文章を作成することが求められます。 プレゼンや会話での工夫は? プレゼンテーションなど、伝えることが求められる場面では、この方法を活用します。普段から、思いついたことをそのまま口にする傾向がありますが、説明資料とその内容を見直すことが重要です。また、メールやチャットでの会話においても、伝えたいことが相手にきちんと伝わるように文章構成を整える必要があります。 どのように資料を整える? 資料作成時やそれに伴う説明を考える際には、伝えたい内容をピラミッドストラクチャー形式で細分化し、何を伝えたいのか、そしてなぜそうなのかを整理するように心がけています。これにより、内容を明確に整理して見直すことが可能になります。

クリティカルシンキング入門

多角分析で心ひらく瞬間

データ分析の視点は? データを分解して見ることで、見え方が全く異なることに気づきました。数値の動向が感じられるような分解軸を柔軟に設定することで、さまざまな視点から分析が可能になります。 仮説検証のポイントは? 1つの軸だけでなく、他の軸も検討しながら負荷をかけることで、導き出した仮説の正確性を検証し、その精度を高めるプロセスがとても重要だと感じました。 顧客分析の切り口は? 実際の顧客分析においても、年代などのパーソナルな情報や興味関心のデータをもとに、何かしらの施策が検討できる可能性があります。流入している顧客層だけでなく、購買している顧客層についても、これまで以上に複数の観点から分解して分析することが大切だと思っています。 最適化の方法は? 分解する軸をどのように最適化していくかは議論の余地があり、試行錯誤によってアタリをつけていくのが良いと考えています。皆さんはどのように感じられたか、ぜひ意見を聞かせていただけると幸いです。

「可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right