クリティカルシンキング入門

批判的思考で深める分析術

本当に合っているか? 大前提として、「その答えは本当に正しいのか?」と自分自身に問いかけ、批判的に考えることが重要です。以下の手法を活用していきたいと思います。 整理のポイントは? まず、データを視覚的に整理し、合計や割合、昇順下降順で加工することで視覚的に情報を得られるようにします。全体を定義したうえで、漏れがなく重複しないように(MECEの原則に基づいて)分解を行います。この際、「いつ」「誰が」「どのように」という切り口から考えることがポイントです。 どの角度で考える? さらに、分析を効率的に進めるために型やフレームを身につけることが大切ですが、まずは手を動かし、そこから見えてくるものに対し「この角度はどうだろう?」や「この視点に漏れはないだろうか?」と批判的に思考を繋げていきたいと思います。 分析の仮説は? 営業戦略やプロジェクトの方針を検討する際には、営業データを多角的に収集することを心がけます。しかし、現状の分析が広がりすぎてしまう傾向があるため、大まかな見立てを立て、仮説を持って分析を行えるようにしていきたいです。 伝え方の工夫は? また、分析結果や方針を伝える際には、データを視覚的に整え、受け手の理解を深める努力をしたいと思います。具体的には、次のことを心がけます。まず、業務が「誰にとっての」「何のための」「どこまでをゴールにした」ものなのかを明確にします。そして、事象を分析する際には、必要なデータが十分に揃っているか確認します。作業を進める中で、分析に漏れがないか、異なる角度から検討が可能かを一度立ち止まって考察します。最後に、データを視覚的にわかりやすく作成することで、自身の分析にも役立ち、他者への説明の際にも理解しやすくなるよう努力します。

クリティカルシンキング入門

具体的な問いが会議を変える

議題はどう定める? 問いを明確にし、常に書き留めておくことの重要性を実感しました。特に会議の場で「~について」という曖昧な議題を出していたことに気づき、何を相談したいのか具体的にすることで、有意義な議論につながると感じました。 会議の目的は? 会議や課題解決に取り組む際、何について考えているかを見失ってしまうことはよくあります。集中していると目的がぼやけるため、会議では必ず議論する内容を表題として残すなど、工夫が必要だと改めて思いました。また、課題解決のために情報収集を行い、エクセルなどで集約する際も、統一した表題で課題を明記しておくと、全体の目的が明確になり助かります。 議論の焦点は? さらに、各シーンにおいて問いを明確にする工夫が求められます。たとえば、会議では自分や他の方が挙げる議題に対して、まず何を相談したいのかという問いをはっきりさせることで、議論の焦点を絞ることができます。アンケート結果を元に施策を検討する際も、アンケート自体が目的にならないよう、何を解決したいのかを明確にし、分析段階で本来知りたかったこと、実現したかったことを見失わずに次のアクションを検討する流れにつなげることが大切です。 企画はどう貫く? 商品の企画・立案においても、世の中の不満を解決するという初志を常に意識することで、製品開発の過程で目的が逸れてしまうことを防ぎ、コンセプトの一貫性を保つ効果があると感じました。 目的と問いはどう? 総じて、議題は「何を相談したいか」を明確にし、問いは常に視界に入る場所に記録しておくことが重要です。また、情報収集時には目的と仮説をしっかり立てた上で実施し、関係者間で共通理解を図るために問いを共有する工夫が必要だと考えます。

データ・アナリティクス入門

仮説と比較で読み解く数字の真実

仮説はなぜ重要? データ分析は、ただ数字を羅列するだけではなく、自分なりの仮説を立て、その仮説を検証するための手段であると再認識しました。数字を見てもただの数字遊びになってしまうため、最初に明確な仮説を設定し、その仮説に基づいて分析を進めることが大切だと感じています。 過去比較はどう読み解く? また、分析においては過去のデータとの比較が非常に重要です。たとえば、あるプロダクトの売れ行きが明確な季節変動を示している場合、過去の同時期や前年のデータと比較することで、その背景にある傾向に気づくことが可能になります。このような比較を通じて、何が影響しているのかを客観的に把握する意義を実感しました。 利用状況はどう見極め? 自社プロダクトの販売実績や機能の利用状況の可視化にも、こうしたデータ分析の手法を取り入れています。毎月、売れ行きや利用状況を分析し自分なりの考察をまとめていますが、最近は単調になりがちで、より深い洞察が求められていると感じています。たとえば、「なぜ売れているのか、なぜ売れていないのか」、「なぜ機能が使われているのか、使われていないのか」といった真因を把握するために、属性や業界別の利用状況・売上トレンドを過去データと比較して分析できるスキルを身に着けていきたいと思います。 仮説検証で何が変わる? さらに、データ分析を行う際は、まず自分なりの仮説を必ず設定することが基本です。たとえば、ある規模以上のお客様では機能利用率が高いが、規模が小さいお客様では逆の傾向があるといった仮説を最初に立てることで、その後の検証や分析がスムーズに進み、より多くの気づきを得ることができると考えています。これまで学んだ分析スキルを活用し、今後も実践的に取り組んでいきたいと思います。

アカウンティング入門

財務分析で企業の真価を見抜く方法

現金の動き、どう感じる? 「現金として出入りしやすい順」に並んでいるという視点を知ることができたのは、大きな発見でした。現金の出入りがしやすい(1年以内)ものを「流動」、出入りがしにくい(1年以上)ものを「固定」と考えるのも、個人的には非常に共感できるポイントでした。 企業のB/Sはどう? 事例として紹介されていた具体的な企業名を挙げることは避けますが、固定資産の多い企業において、事業の特徴がその企業のB/Sから読み取れるのは興味深かったです。特に、鉄道会社や不動産会社の固定資産が大きな割合を占めることを考えると、他の同業他社と比較してみたくなります。 流動計上、納得できる? また、買掛金など営業サイクルに含まれる資産・負債を流動とする考え方も、1年以内に現金として出入りするものとして理解しやすく納得しました。 B/S活用場面は? ①B/Sを現実の場面で活用するイメージがまだ明確にできずにいます。例えば、M&Aのニュースがあった際、買われる企業のB/Sを見て、純資産とのれんの程度を確認し、その買収額が妥当かどうかを掴むのに使えるかもしれません。 買収の価値は? ②また、買収先を検討する際、その企業の価値やシナジーを考える上で、妥当な買収額をイメージするための参考にしたいです。 業界分析、進む? 11月中に、人材業界の競合他社のB/Sを5社確認し、各社の資産・負債における流動・固定、純資産の割合の違いを比較してみる予定です。さらに、建設業界とエネルギー業界についても、それぞれ5社の特徴を調べてみようと思います。仮説としては、人材業界は、特定の企業と純資産の割合が近いとされ、建設・エネルギー業界は、特定の企業と固定資産の割合が似ていると考えています。

クリティカルシンキング入門

クリティカルシンキングで学びを深める旅

クリティカルシンキングの効果は? 私が今回の学習を通して感じた重要な点は、クリティカルシンキングを常にトレーニングして身につけ、それをアウトプットすることの大切さです。学んだ知識を実際に使うことで、理解が深まりました。 問いを立てることの重要性 特に「目的は何か」を常に意識し、自身や他者の思考の癖を前提に考えることが重要だと感じました。また、問いを立てることで方向性を見失わず、具体的な行動に繋げられることを実感しました。 WEEK6では、WEEK1で学んだ内容を少し忘れてしまっていたため、復習の重要性を再認識しました。特に「問いは何か?」という点について、その重要性を改めて感じました。 社内での打ち合わせをどう活かす? 社内の打ち合わせでは、方向性を見失うことがあります。そのため、常に問いを立てて共有することが必要です。いきなり具体的なアクションに飛びつかないようにし、物事を分解する際にはMECEを意識して取り組むことが効果的だと感じました。 資料作成で確認すべきことは? 資料作成に関しては、誰に何を伝えるための資料なのかを確認することが大切です。もし確認できない場合でも仮説を立てて資料を作成することが重要です。また、読み手の立場から考えて、伝えるべきポイントが明確かどうかを確認することが必要です。 アウトプットを増やす効果的な方法 最後に、アウトプットを多めに取り入れた勉強スタイルについてです。チャンスを逃さず、積極的にアウトプットの機会を作るように意識しています。例えば、同僚や家族、友人に学んだことを話してみることが効果的です。また、文章力を上げるために文章を書いてみる日を作り、アウトプットを通じて足りないインプット情報を見極めるよう努めています。

クリティカルシンキング入門

問いがひらく学びの扉

議論開始の問いは? 議論を始めるときは、まず「今向き合うべき問い」を明確に特定し、参加者全員で共有することが大切だと実感しました。漠然と議論を進めたり、やむを得ずアクションに移すだけでは、効率が悪くストレスもかかるため、様々な視点から問いを捉え、抜け漏れや重複がないかを意識する必要があると学びました。 伝わる言葉の工夫は? また、相手に伝わる言語化と可視化の手法にも大きな意義を感じました。主語を省略せず、相手が持っている情報や求めている内容、そして最終的なゴールを考慮した構成にすることで、より分かりやすいコミュニケーションが可能になります。さらに、データを分解する際には一歩進んだ考察や、グラフや強調表現を用いた視覚的な工夫が、情報を容易に理解してもらう鍵となります。 実践で感じる難しさは? また、インプットした知識を実際の仕事に活かし、アウトプットし、フィードバックを得た上で振り返る一連のプロセスが思った以上に難しいと感じました。慣れ親しんだ頭の使い方に頼ってしまうため、言語化して成果を示すことに対する抵抗感もありますが、まずは身近な相手に発信することで自信をつけ、学びを定着させることが必要だと強く思います。 マネジメントの見直しは? これらの学びは、マネジメントや組織課題に対する施策立案の現場で活かすことができると考えています。マネジメントにおいては、相手ごとに適切な情報提供の構成を工夫し、目的とゴールを初めに明確にすることで、議論に一貫性を持たせることが可能です。組織課題の解決に取り組む際も、まず「今向き合うべき問い」を明確にし、共通認識のもとで問題を分解・仮説立てし、複数の根拠をもって主張することが、効率の良い課題解決につながると感じています。

データ・アナリティクス入門

ABテストで見える進化の軌跡

どうプロセスを分解する? どこに問題があるかを明確にするため、プロセスを段階ごとに分解することが重要です。まず、問題発生箇所(Where)を複数の切り口で特定し、それぞれに対してABテストを実施することで仮説検証を行います。こうした手法は、効率的なコストパフォーマンスに寄与すると同時に、その後の具体的な取り組み(HOW)を事実に基づいて策定するために欠かせません。 どうデータを把握する? 私は製薬会社でMRを担当しており、担当エリアの製品が伸び悩んでいる状況をデータ分析によって明確に把握しました。売上や市場シェアの推移を詳細に検証することで、次のアクションに向けた具体的な問題点の特定が可能となりました。たとえ、担当者固有の感覚や直感に頼りがちな部分があっても、事実ベースの行動こそが仮説検証を丁寧に進める鍵であると実感しています。 何が効果的なABテスト? 具体的なABテストとしては、Aパターンではメディカル専門部署との同行訪問を実施し、Bパターンでは他施設での成功事例を共有する取り組みを行いました。一定期間のテストを経て、どちらのアプローチがより効果的であったかを定量的に評価し、その結果を基盤に最適な施策をエリア全体に展開する方向性を見出すことができました。 どう成長を促進する? 担当エリアの製品成長を促進するための手順は、まず現状把握として売上や市場シェアを分析し、成長が停滞している顧客層を見定めることから始まります。次に、影響力のあるキーパーソンや波及効果の大きい対象をリストアップした上で、仮説を設定しABテストを実施します。その後、テスト結果を定量的に比較し、最も効果が高い施策をエリア全体に適用し、次のアクションに反映させるという流れで進めています。

データ・アナリティクス入門

あとひと手間!四段階で切り拓く解決力

どう問題解決する? 問題解決の基本プロセスとして、「What → Where → Why → How」の4つのSTEPを学びました。プロセスを細かく分解し、複数の選択肢を洗い出し、根拠をもって絞り込むことの重要性を強く感じました。日常の業務において、これらのステップをいくつも行き来しながら問題の原因を探る手法は、非常に実践的だと実感しました。 視点を変える意義は? また、仮説を立てる際には、問題に関わりがありそうな要素だけでなく、それ以外の視点にも目を向ける考え方が有益だと学びました。対概念で物事を考えるアプローチは、固定概念に囚われず幅広い視野で問題解決に取り組む姿勢を養うための大切なポイントです。 ABテストの真意は? さらに、ABテストを活用して施策の効果を比較し、条件を揃えた上でデータを分析するプロセスは、仮説検証の精度を高める上で非常に有効だと感じました。仮説を実践しながら効果を測定し、次のアクションにつなげる一連の流れは、今後の分析業務にも大いに役立つと思います。 離脱理由は何か? 加えて、ファネル分析によってユーザーの利用段階を明確に分解し、どのプロセスで離脱が生じているかを把握する手法も印象的でした。漏斗のように段階ごとに数値を追うことで、課題がどこにあるのかを具体的に把握できる点は、現場での運用改善に直結する大切な視点です。 実践で成長する? 全体として、これらのアプローチを繰り返し実践することで、柔軟かつ論理的な問題解決能力を養えると感じました。定量分析やアンケートを活用し、他者の視点も取り入れた説得力のある提案や、チーム目標の設定など、今後の実務や運用計画にも直結する内容で、非常に有意義な学びとなりました。

データ・アナリティクス入門

小さな実験が拓く大きな未来

仮説はどう捉える? これまでの演習よりも多くのデータに触れる機会があったため、ただデータを見るだけではなく、まず「こういう仮説があるのではないか?」という視点を持って取り組むことが重要だと実感しました。また、仮説は一つに固執せず、他の可能性も網羅的に考えることで、思いつきに頼らないアプローチができると感じました。 PDF加工の落とし穴は? 一方で、PDFデータの加工には非常に頼りになる一面があるものの、誤認識により表の数字が間違うケースもあったため、過信せずに慎重に取り扱う必要があると痛感しました。 数字整理はどうする? ファネル分析とABテストは、どちらもすぐに実践できる手法として役立つと感じました。ファネル分析では、業務フローの数字が断片的にしか取得されていない現状を踏まえて、業務フローを整理し、必要なデータを集めてファネル化することが求められます。 仮説検証は進んでる? また、ABテストでは、うまくいっていない点に対して仮説を立て、比べるべき内容を明確にして、結果が確認できるデータを準備することが大切です。これらの手法を同時期にテストし、比較検証することで、より精度の高い分析が可能になると感じました。 分析の意義は何? さらに、なぜファネル分析やABテストが必要なのか、その意義を自分なりに言語化することも重要です。今週学んだ内容を整理し、データアナリティクスの重要性を前提として、具体的な提案にまとめる作業は大変有意義でした。 実践の意味は何? 最後に、実データに毎日触れてトライアンドエラーを重ねることが、さらなる改善点の発見につながると実感しました。これからも、日々の実践を通じて知見を深めていきたいと思います。

データ・アナリティクス入門

動きながら考える仮説の極意

どんな仮説が必要? 仮説とは「ある論点に対する仮の答え」であり、答えである以上、いい加減な内容では通用しないと実感しました。どのような仮説を立てるかが極めて重要であり、良い仮説を構築する方法について疑問が生じました。 原因をどう究明? また、課題解決の仮説は、単に「どこに問題があるか」と考えるだけでなく、問題箇所が特定できた場合でも、その原因を十分に掘り下げるプロセスが不可欠であると感じました。徹底した分析によって、問題の本質に迫ることが大切だと思います。 反論はどう除外? さらに、仮説はそれ自体以外の反論を排除しながら構築すべきだと考えます。まずは対象となる事象(What)を明確にしたうえで、問題の所在(Where)を適切に分解し、抜け漏れのない形で仮説を立てないと、説得力を持った論点整理は難しいのではないかと感じました。 対応をどう構築? 加えて、ある事象に対して対応時間が長期化しているという問題を例に考えると、What自体は把握できているものの、問題の具体的な所在(Where)に対する仮説が立てられていない現状があります。問題点をMECEに分解しながら仮説を検証するためにも、現場の実情を踏まえてまずは動いてみるというアプローチも一つの方法ではないかと思います。 試行で見える答え? こうした見解から、動きながら仮説を立ててみる方法が有効なのか、またその過程で優れたインタビューの実施にも注力する必要があるのではないかと考えています。同じように、受講している皆さんもどこに問題があるのか(Where)の見極めに悩まれているのではないでしょうか。まずは実際に動きながら仮説を試してみることが、より良い解決策へとつながると感じました。

データ・アナリティクス入門

データ分析の基礎から見直す重要性

比較対象を誤解することの影響は? 分析の基本は比較にあります。特に、比較する対象が「類似性の高いもの同士(Apple to Apple)」であることを意識する必要があります。これまで自身で行ってきたデータ分析において、その認識が誤っていたと感じました。しばしば「異なるもの同士(Apple to Orange)」を比較しようとしていたことに気づいたのです。 データ作成の目的を明確にするには? また、データ作成の際には、まず「目的」を明確にすることが重要であると学びました。ライブ授業で問題に取り組んだ際、大切なポイントを見落としていたことがありました。今後、データ分析を行う際には、まずその分析の目的を再確認し、その上で分析を進めていきたいと思います。 仮説を線で考えることの重要性 さらに、仮説立てに関しても、全体像を広く理解し、点ではなく線で考えることが重要です。これにより、いくつかの仮説をより具体的に報告できるよう努めたいと思います。特に、SEOに関わる数値分析や会員登録までのユーザー動線の見直しに活用できると感じています。 効果的なデータ分析方法とは? データ分析の目的としては、以下の点に注意したいと考えています。 ・さまざまなタイプのデータの特性と、陥りがちな分析の落とし穴に注意する。 ・定量データを用いた分析の重要性を認識し、その活用を図る。 比較と改善のためのディスカッションの重要性 最近は、コンペティターのメディアとの比較や、ユーザー登録導線の参考メディアやランディングページと自社サービスの比較を十分に行えていませんでした。これを改善するため、チームメンバー全員でグループディスカッションを行い、検証結果を導き出す方法を取りたいと思います。

戦略思考入門

差別化と戦略思考で未来を描く

誰へどんな価値? 戦略思考における学びで特に重要だと感じたのは、差別化についての考え方です。すべてには相手が存在し、その相手にどのような価値を提供できるのかを考えることが出発点になります。仕事でも「顧客」という大きな括りで考えるのではなく、さらに細分化し、実際のターゲットはどこにあるのか、何を求めているのか、どんな状態で達成が実現されるのかを明確にしていきたいと思いました。 フレームの意味は? フレームワークについても、その目的を見直す必要があります。フレームワークは現状を整理するためのツールであり、目的がフレームワークを行うこと自体になってしまわないように、情報を整理し、つながりを見つけることを心がけたいです。 差別化をどう掘る? 自組織の戦略においては、差別化の視点からさらに深掘りすることが必要です。ターゲットのニーズや期待、達成すべき状態を具体的に定義し、コスト戦略や差別化戦略、集中戦略に対して、細分化したターゲットにどのように当てはめるかを仮説として立てていきます。そして現在の自組織のリソースや顧客関係を考慮し、その戦略が実現可能で継続的かを再評価します。これらを基に、下期の方針を振り返り、来期の方針の策定に活かしていきます。 時間の使い方は? 考える時間を確保することも重要です。限られた時間の中でアウトプットを最大化するために、時間の使い方を見直し、やらないことを決めることで断捨離や家族への協力を求めていきたいと思います。また、アウトプットを確保することも欠かせません。インプットだけでなく、検討した内容を上司と1on1で話し合ったり、フレームワークで整理した内容をチーム内で共有することで、思考を自分のものにしていく計画です。

「仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right