データ・アナリティクス入門

全体像から磨く問題解決術

今週の学びは、以下の2点です。 問題解決の手法は? まず、問題解決のフレームワークである「MECE/もれなくダブりなく」を徹底的に磨くことの重要性を感じました。この切り口で問題や課題に取り組むと、全体像の解像度が格段に上がるという実感があります。 問題の特定方法は? 次に、最初に問題を正確に特定することがポイントであると学びました。最初の当たりがずれてしまうと、その後の原因分析や課題解決の方向性にも影響が出るため、問題や原因が的確に把握されているかを常に確認する必要があると感じています。 対策の基準は? また、これらは業界や具体的な問題解決の種類を問わず、普遍的なスキルであると理解しています。日常業務では他者の解決策を参考にする機会が多いですが、それぞれの対策が正確に特定された問題とその原因に合致しているか、今後も意識して確認していきたいと思います。

クリティカルシンキング入門

視野を変える!クリティカル体験

論理整理のコツは? これまでの講義ではクリティカルシンキングの基礎知識を学びましたが、実際に具体的な問題に直面すると、論理の整理すべき順序を忘れがちになることに気が付きました。 瞬時思考の秘訣は? 知識として身に着けることも大切ですが、ディスカッションの場では、瞬時に思考を巡らせ、言語化できる能力が求められると感じました。そして、今回のケーススタディによる学習は、クリティカルシンキングを実践する上で非常に有益であると実感しています。 分析視座はどう変わる? また、これまで組織の問題を解決するためには、自社や業界の知識が不可欠だと考えていました。しかし、今回の講義を通じて、現状を分析する際に視座を変えることが、より効果的な解決策にたどり着くための鍵であると気づかされました。今後は、常に広い視野を意識しながら問題解決に取り組んでいきたいと思います。

リーダーシップ・キャリアビジョン入門

理論融合で導く新たなリーダーシップ

リーダーシップはどう進化? 学んだ理論や考え方を組み合わせることで、部下の動機付けの状態や状況に合わせた最適なアプローチが選べると感じています。これまでその場しのぎの対話やリーダーシップに頼っていた部分もありましたが、より立体的なリーダーシップスタイルを具体的にイメージできるようになりました。特に、マズローの理論やX/Y理論、エンパワメントを応用した手法は、部下の動機付け状態を的確に診断できる点で、今後も実践していきたいと考えています。 変化への対応はどう? また、新たな販売モデルや業界の変化を背景に、従来のビジネススタイルや考え方のアップデートが求められていると実感しています。上意下達の形に陥ることなく、日頃のメンバーとのコミュニケーションを通じて、学んだ理論をイメージしながらリーダーシップスタイルを柔軟に使い分けることが重要だと感じています。

クリティカルシンキング入門

守破離で広がる自由な発想

発想の広がりは? 何かを考えるとき、無意識に自分自身を枠に閉じ込めてしまっていることに気付かされました。発想を広げるためには、ロジックツリーなどのテクニックが有用ですが、これらを自然に使いこなせるようになるには、繰り返し実践することが大切だと考えています。 守破離で成長できる? また、私が特に好きな言葉に「守破離」があります。まずは「守」を徹底的に実践し、その後「破」や「離」へと進むことで、さらなる成長を目指したいと思っています。 客観視点は有効? 現在、IT業界でマネジメント職に従事しており、時には経験則に基づいた判断をしてしまうこともあります。そこで、今後は客観的な視点から検証した結果と比較しながら、根拠のある判断を心がけていきたいです。そうすることで、周囲の納得を得ながら全体の生産性向上につなげられると信じています。

戦略思考入門

学びが進化する生成AIの力

規模の経済本当? 規模の経済性については、なんとなく理解しているつもりでしたが、具体的にどの範囲で効果が発揮され、また逆に不経済となるケースがあるかを学び、改めて納得しました。 習熟の変化は? 習熟効果に関しては、これまで自分の業界で当然の現象と感じていました。しかし、生成AIの登場により「急激なイノベーションが習熟効果に大きな影響を与える」という事実を実感することができました。 ネットワーク理解は? また、ネットワークの経済性についても、仕組みを聞くことで再び理解を深めることができました。 業界はどう変わる? 業界によっては規模の経済性を十分に活かせない場合もあると感じますが、生成AIの影響下では習熟効果が劇的に変化しているため、今後はAIを活用した新たな習熟効果の模索に取り組んでいきたいと思います。

アカウンティング入門

B/Sから読み解く企業の未来

B/SとP/Lのつながりは? B/SとP/Lの関連性について、まずは当期純利益がB/Sの純資産に反映されるという繋がりを理解できた点が良かったと感じています。また、B/Sは企業のビジネスモデルや投資方針を示す資料であることが分かり、例えば鉄道系のインフラ企業とソフトウェア企業では固定資産の割合など、B/Sの構成がビジネスモデルによって異なることも実感しました。 今後の分析計画は? 今後は、まず自社のB/Sを入手し、その内容を理解した上で、業界内の上位企業のB/Sを3社ピックアップし、構成や投資の内容を分析する予定です。さらに、自社のB/Sとこれらの企業との違いを確認し、分析結果を経理部門やチームメンバーへ共有します。6月には、P/LおよびB/Sも含めた情報を集め、企業の状況調査と内容の分析を進める計画です。

アカウンティング入門

PL分析で見えた!未来の利益拡大戦略

PLの理解を深める意義とは? PL(損益計算書)の仕組みを理解する学習を通じて、企業がどのように利益を生み出すかだけでなく、将来的にどのようにして利益を拡大していくべきかを、その企業のコンセプトを考慮しながら想定することが重要であると学びました。 月次分析での知識活用法は? まずは自社の状態を把握するために、毎月の月次分析でこの知識を活用したいと思っています。利益の有無だけでなく、今後どのような対策を取ることでさらなる改善が期待できるのかという観点からも分析を進めていきたいです。 競合と取引先のPL比較はなぜ重要? さらに、競合他社や取引先に関する分析も行い、さまざまな業界のPLとの比較も試みていく予定です。なお、グループワークで紹介された動画も参考にしながら、学びを深めていきたいと考えています。

データ・アナリティクス入門

AIコーチングで広がるグループ学び

グループの雰囲気はどう感じた? 初回は緊張しましたが、グループワークでは話しやすい雰囲気で進行できたため、大変助かりました。また、AIコーチングによる問いかけが非常に面白く、考えるきっかけとなりました。 研修効果は本当に測れた? 研修効果の測定に向けては、既存の受講アンケートで収集した定性・定量データを十分に活用できていないと感じています。今後は、受講者の満足度アンケートや受講前後の評価、テストスコアの推移を分析し、研修プログラムが成果につながっているのかを検証していきたいと考えています。 業界のデータはどう活かす? さらに、各業界におけるデータの利活用方法や、これからの取り組み動向についても知りたいと思っています。その情報を基に、自社や業務への取り入れ方を検討する参考にしたいです。

戦略思考入門

戦略と柔軟さで未来を拓く

差別化の意義は? 差別化という言葉をよく耳にしますが、今回の学びを通してその具体的な考え方についてヒントを得ることができました。自社、競合他社、そして業界全体の動向をしっかり把握したうえで、フレームワークを活用し、長期的な視点で戦略を検討する必要性を実感しました。また、ときには不要な要素を捨てる柔軟さも重要であることを学びました。 予算の見直しは? 一方、与えられた予算を意識するあまり、目先の数字にばかり注目してしまう傾向が見受けられました。今後は、単に数値を追うだけでなく、人材育成も含めた長期的な視点から判断することが求められると感じました。また、これまで継続案件としてそのまま放置してきた取り組みについても、整理し、不要な部分は捨てることが必要だと再認識しました。

戦略思考入門

一歩先の大局観が拓く未来

大局観をどう広げる? 今週のキーワードは「大局観」と「二歩・三歩踏み込んだ分析」でした。これまで、課題解決にあたっては目の前の事象や顧客の声に偏り、表面的な情報だけで進めてしまう傾向がありました。そのため、今後は顧客のみならず、競合や業界全体の状況も考慮に入れ、より深い分析を行うことで、効果的な対策を導き出し、組織の成長に繋げていきたいと感じました。 分析が導く変化は? さらに、自社の強みを洗い出し、他社との差別化を図る際にも、今回学んだ各分析手法は大いに活用できると考えています。航空業界は国際情勢など外部要因の影響を強く受けるため、その中で唯一無二の強みを掘り出し、組織全体で共有することで、揺るぎなく顧客から選ばれる存在作りに繋げられるのではないかと思います。

戦略思考入門

論理と感性で描く新たな未来

どんな姿を目指す? この6週間で、自分が目指すべき姿を明確にすることの大切さを実感しました。改めてありたい姿について考える機会を得ることで、今後進むべき方向が見えてきた気がします。 習慣にする理由は? また、フレームワークを用いた分析を通じ、根拠に基づいて大胆な取捨選択を行う力を養うことができました。今後は、この学びを日々の習慣とし、常に論理的な視点で物事に取り組めるよう努めたいと思います。 業界分析の極意は? さらに、感覚や単なる事例に頼った提案ではなく、クライアントの業界全体を見渡しながら、フレームワークを活用して徹底的に考察する姿勢を身に着けることが必要だと感じました。こうした意識や習慣が、新たなアイデアの源泉になると確信しています。

データ・アナリティクス入門

課題解決の新たな羅針盤

プロセス分解で発見は? 課題解決のプロセス(what, where, why, how)について学ぶ中で、総合演習などであまり意識していなかったプロセス分解の手法に新たな気づきを得ました。A/Bテストに関しては、IT業界での知識はあったものの、今後は条件を整えてしっかり活用したいと考えています。 複数仮説の真価は? また、日常的に様々な判断を迫られる中ですぐに課題への対応策を考えてしまう傾向があるため、今回の研修を通じて問題や課題に対して、明確なプロセスを意識して複数の切り口からデータを分析する重要性を再認識しました。今後は、複数の仮説を検証して得られた知見を実際の管理業務に活かすことで、より効果的に課題解決へと繋げていきたいと考えています。
AIコーチング導線バナー

「今後 × 業界」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right