戦略思考入門

学びを活かす!目標設定とフレームワークの力

どうして成長できた? 1週間の学びを振り返る演習でした。最初に学んだ内容は覚えていると思っていましたが、一部忘れていた部分もあり、見直すことができてよかったと思います。学んだだけではスキルとして身につかないことを改めて実感したので、積極的にアウトプットを行い、生きたスキルにしていくことを意識しています。 どんな目標を持つ? さまざまな学びの中でも、特に印象に残ったのは目標を設定して取り組むという考え方です。仕事を進める上でKGIやKPIを設定するのは自然なこととして行っていますが、実際には目標を設定せず、思考が雑然としていることが多いと感じました。常に自分が何のために考えているのか、何を目標にして業務を行っているのかを明確にすることが、最短のルートであると再認識しました。 フレームはどう使う? また、フレームワークについても、その定義を再確認し、曖昧な知識で使わないことを意識しました。フレームワークは、先人の思考が形になったものだからこそ、「使うこと」に固執するのではなく、自分の思考を整理するための補助ツールとして活用していきたいです。フレームワークをしっかり理解した上で使うことで、他者にも納得感を持って伝えられると思います。 業務の取捨選択は? チームメンバーが少なく、タスクが多い状況だからこそ、どの業務を続け、どの業務を中断するかを学んだ知識とフレームワークを活用して見極めていきたいです。そのためにはマクロな視点で目標を設定し、達成までの最短ルートを分析することが大切です。また、その考え方を一つの真実とするのではなく、自身の思考を常に疑い、判断力を磨いていきたいです。 本当に最短か? 具体的には、マーケティング施策を立案する際に必ず目標設定とKPIを設け、ミクロな視点で業務に関わりがちな現在の立場でも、マクロ視点を意識するよう心掛けます。そして、常に「本当にそれが最短なのか」を問い続けることが必要です。また、フレームワークの概念を理解し、仕事だけでなくプライベートでも疑問や解決したい出来事に対し、自身の考えをフレームワークで整理できるようになりたいです。

クリティカルシンキング入門

本質を捉える思考のトレーニング

なぜクリティカル思考? コースを通じて、クリティカル・シンキングは知識を実務に活かすための基礎体力であり、自身の思考を意識的にチェックするもう一人の自分を育てるプロセスであると理解できました。以下、その学びを整理して記します。 情報はどう見抜く? まず、思考の基礎についてです。大きな学びは、情報に対する客観性を獲得できたことです。日常生活において、ニュースのグラフや主張をそのまま受け止めるのではなく、必ず検証する習慣がついてきました。また、複雑な意思決定の場面では、複数の視点や構造的思考を活用し、感情や直感に左右されない判断軸を確立できるようになりました。 問題の本質は何? 次に、問題解決のプロセスに関して学びました。施策検討に入る前に、まず解くべき本質的な問い(イシュー)を見極め、全体像をMECEに分解することで問題の所在を明確にする方法を習得しました。さらに、具体と抽象の対話を通じて発想を広げるプロセスも身につけることができました。 伝え方には工夫が? また、相手に伝える際の工夫として、解釈のずれを防ぐためにビッグワードの使用を避け、結論を先に述べる順序を意識するようになりました。データ分析においても、解像度を上げつつ、どのようにデータを分解するかを考えることで、イシューがより明確になるよう努めています。 提案はどう作る? 私は、損害保険の営業部門に所属し、上場企業の金融機関、M&A仲介企業、ベンチャー企業を担当しています。お客さまへの提案の際には、まず相手のイシューを捉えることが重要だと考えています。自分が何を提案したいかではなく、お客さまの抱える課題とその解決策を重視し、具体的なイシューを設定してカバーの方向性を決定しています。提案書作成時には、主張を根拠で支えるピラミッド構造を意識し、抽象的な表現を避け、具体的な財務損失の数値やカバー範囲を提示することで説得力を高めています。 努力はどこへ向かう? このようなプロセスを日々意識し、実践力の強化に努めるとともに、反復トレーニングや他者とのディスカッションを継続しています。

リーダーシップ・キャリアビジョン入門

実践で磨く信頼とリーダーシップ

講座の学びは何? これまでの講座で、リーダーシップやモチベーションマネジメントに関する各種理論を学びながら、AIを活用した実践演習にも取り組んできました。最終回のクロージングセミナーでは、学んだ知識をもとにロールプレイ練習を行い、大変有意義な学びとなりました。AIのフィードバックも参考になりましたが、実際に受講生同士がお互いにどのように声をかけ合うかを見て、自分の行動を振り返るきっかけとなりました。また、今後の面談で真似したいポイントを見つけることもできました。 信頼はどう育まれる? リーダーとフォロワーの関係は、何よりも信頼に基づいています。信頼がなければ、どのような行動も効果が半減し、せっかくの取り組みもメンバーのモチベーション低下につながってしまいます。 低迷の理由は何? これまでの自分を振り返ると、仕事にやりがいを感じながらも、上司の評価や指示に納得できず、モチベーションが下がる場面に何度も直面してきたことがありました。モチベーションマネジメントを学んだことで、その原因が整理でき、今後リーダーとしてメンバーと共に働く中で、以下の理論や考え方を思い出しながら、より良い関係の中で成果を追求するチーム作りを心がけたいと考えています。 ・マズローの欲求の五段階説 ・ハーズバーグの動機づけ・衛生理論 ・マネジリアルグリッド ・エンパワメント 仲間の動機は何? まずは、共に働くメンバーの動機やその根底にあるものを理解することを大切にしていきたいと思います。そのために、メンバーとの振り返りの時間を意識的に確保し、相手の話を根気強く聞くとともに、質問の質を高め、真意を引き出す努力を重ねたいです。理論の理解だけでは不十分であり、日々の実践と経験が不可欠だと実感しています。 振り返りの実践は何? そして、メンバーとの定期的な振り返りの機会を活用し、面談に向けた事前準備を丁寧に行うこと、面談後に改善点を洗い出して次回に生かすこと、前回の反省点を踏まえて面談を実行することを、今後の日々の業務に取り入れていきたいと考えています。

リーダーシップ・キャリアビジョン入門

振り返りから見える成長への道

理論の変化はどう捉える? モチベーション理論は元々知識として持っていたものの、古い理論であるためか、解説によって解釈に多少のばらつきがある点に気付きました。理論自体は維持されているものの、時代に合わせた解釈への変化が印象的でした。 実践で迷う理由は? また、理論として理解していたものでも、実際に演習に取り組む際には考え込んでしまう場面があり、実践的に使いこなす必要性を強く感じました。 任せ方の境界は? 仕事の任せ方に関しては、以前経験した「やり方を握ったのにあれこれ口を出す」といったやり方が良くない例として挙げられており、想定内の状況であればそのまま任せるという判断と、必要な場合に意見を述べる線引きを意識することが大切だと改めて認識しました。 フィードバックはどう? また、提示された「モチベーションは主観である。だからこそ、寄り添うことが重要」という考えに共感し、フィードバック時にはメンバーに他の可能性を考える機会を十分に提供するよう努めたいと感じました。これまで自分から代案や最適解を提示してしまった点を反省し、今後はメンバー自身が考える場面を設けることを意識します。 直感と理論はどう比較? さらに、モチベーションに関しては、理論を頭に浮かべながら現状の分析や対策を練り、直感的な対応との違いを確認することで、より適切なアプローチを模索していきたいと思います。何よりも、過干渉にならずにメンバーの考えに耳を傾け、共感する姿勢を大切にする必要があると感じました。 毎日振り返る意味は? 日々の活動の中で、実践すべき行動が不足していると感じる瞬間があるため、毎朝この振り返りを確認し、昨日の行動と今日の目標を意識するよう心がけます。メンバーの数が限られているため、特別な実践の場を設けることなく、日常の中で継続的に取り組む考えです。 他リーダーの学びは? 最後に、他のリーダーの行動を観察し、感心する点があればその理由や自分でも実践可能な内容かを整理していくよう努め、より良いリーダーシップの実践を目指していきたいと思います。

データ・アナリティクス入門

分類の新視点、成功への一歩

分析とは何? 「分析=分類」という視点は、データ分析の本質を捉える上で非常に重要だと感じました。膨大な情報をそのまま扱うのではなく、目的に応じて比較可能な形に分類・整理することが、分析の第一歩であると認識しています。また、「分析とは比較なり」という言葉が示すように、異なる要素や時点を比較することで、初めて傾向や違いが明確になっていく点も学びました。 目的はどう明確? さらに、分析には明確な目的が必要であり、仮説を立てて検証するサイクルを回すことが、意味のある結果を得るために不可欠だと実感しています。この考え方は、数値の単なる把握に留まらず、どの部分を改善すべきか、どうすれば成果が上がるのかといった具体的な施策検討へとつながるものであり、今後の業務に積極的に取り入れていきたいと考えています。 講座促進策はどう? また、データ分析の知識は、当社が推進している講座の受講促進において大いに活かせると期待しています。具体的には、対象となる教育機関や宿泊業界における研修実績や予算、過去の導入事例などを定量的に整理・分析することで、より効果的な提案資料の作成や、営業の優先順位付けが実現できると感じています。さらに、各施策ごとの反応や申込数などを時系列で可視化することで、PDCAサイクルの精度向上にも寄与するはずです。 ターゲット抽出はどう? まずは、教育機関や宿泊業界の人材育成に関するデータ収集から始め、公開情報や補助金制度、業界レポート、ヒアリングを通じて得た情報をExcelで整理します。次に、予算規模や研修回数などの傾向を数値化し、明確なターゲット層を抽出していきます。その上で、ターゲットごとのニーズに合わせた提案資料を作成し、営業活動に活用する計画です。また、講座紹介の販促施策における各種反応率を記録・比較し、次回以降の営業活動の改善点を把握できるようにしていきたいと考えています。 継続学習はどう進む? 今回学んだ知見を踏まえ、まずは小さな一歩を着実に進めながら、継続してデータを扱う習慣を身につけ、業務の中で活用していく所存です。

データ・アナリティクス入門

データ分析で見つけた新しい視点と手法

なぜデータ分析の目的が重要? 今回の講座を通して、データ分析の方法について新たな視点を得ることができました。これまでは、やみくもにデータ分析に取り掛かりがちで、HOWにばかり目を向けていましたが、まずは目的や問題点を特定し、そのうえで分析を進める重要性を認識しました。また、複数の仮説を持ち、それを検証するプロセスも新たな学びとなりました。この講座を通じて、アウトプットの重要性も改めて実感しました。インプットしたことはすぐに忘れてしまうため、学んだことを自分の言葉にする時間を確保し、習慣化することが大切だと感じました。 データ分析のステップとは? 現業務においては、データ分析をプロセスに分けて取り組みたいと思います。具体的には、目的の設定、問題点の特定、原因の分析、解決策の検討というステップを踏むことで、自分の行うデータ分析の目的を明確にし、どのような視点で仮説を考えるべきかをシャープにしていきたいと考えています。 データ分析の型をどう身につける? また、データ分析の型を身につけたいと思います。特定の分析を行う際の型が身についていれば、データ分析の実行が容易になると感じました。例えば、特定の状況で使う分析手法をあらかじめ知っておくことで、効率的に進められるでしょう。 学びを習慣化する方法は? さらに、自身の成長のためにも学びやアウトプットを習慣化したいと考えています。講座を通じて行った振り返りやグループワークでの意見交換は、知識や思考を深める助けとなりました。これを続けて習慣にしたいと思います。 実践知識をどう高める? データ分析の実践知識についてもさらに勉強を進めたいです。他社事例などを参考にしながら、より鋭い経営分析や戦略検討ができる基盤を築けるよう努力します。 BS項目の分析はどう進む? 特に、まだ分析が進んでいないBS項目については、プロセスに則って分析し、課題解決に取り組む予定です。また、週に1度はアウトプットの日を意識的に作り、学んだことを整理し、反省点や来週の目標設定を行う時間を確保したいと思います。

データ・アナリティクス入門

仮説検証で切り拓く未来

仮説検証はどう進める? 原因についての仮説を立て、その検証のためにデータを集積することは、とても重要なプロセスです。思考の整理には、フレームワークの3C(Client, Competitor, Company)や4P(Product, Price, Place, Promotion)を活用することで、さまざまな視点から情報を捉えやすくなります。また、データの集積方法としては、複数の仮説を構築し、比較するためのデータを収集すること、さらには反論を排除できる情報まで踏み込むことが求められます。 仮説思考って何? 仮説思考には「結論の仮説」と「問題解決の仮説」があり、特に後者はWhat > Where > Why(原因追及) > How(Solution)の順序で検証することで、その精度を高めることができます。これまでは、業務上の課題に対し、2~3の情報のみで仮説検証を行っていたため、フレームワークや仮説プロセスを十分に活用できず、深堀りができていなかったと感じます。 情報の正確さは? 複数の視点から検証を行うことで、偏りのない包括的な情報が得られると同時に、正確なデータと信頼性の高い情報源へのアクセスの重要性を改めて認識しました。不正確な情報による誤解を避けるためにも、情報の正確さは不可欠です。 過去の教訓は何? 過去の業務を振り返ると、複数のデータベースを活用していたため、データ統合の正確さや集積時点の一貫性が取れていなかったことを反省するとともに、自分のデータ分析に対する知識不足を痛感しました。今後は、正しい仮説を立てることで説得力を持たせ、より正しいアクションへと結びつけていきたいと考えています。 実践で学ぶ仮説は? また、日常のさまざまなシチュエーションにおいても仮説検証を実践し、Week4で習得した知識を無料研修などの実践の場で活用していくつもりです。問題解決の仮説プロセス(What > Where > Why > How)を業務に取り入れることで、仕事の分析や効率、精度の向上につなげていきたいと思います。

データ・アナリティクス入門

AIDAとAIDMAを理解して見直す購買行動

AIDAとAIDMAの区別は? 「AIDA」と「AIDMA」の違いについて学んだ結果、これまで曖昧だった理解が整理されました。 AIDAの流れはどう? AIDAモデルは、顧客が商品やサービスを購入するまでのプロセスを4つの段階で説明します。最初のAttention(注意)では、消費者が商品やサービスに興味を引かれる段階で、広告やプロモーションが効果的です。次にInterest(興味)で、消費者はさらに情報を求めます。Desire(欲求)の段階では、消費者の心に商品を手に入れたいという欲求が生まれ、最後にAction(行動)で、実際に購入に至ります。 AIDMAは何を重視? AIDAとAIDMAの違いも明確になりました。AIDAは購買行動にフォーカスしていますが、AIDMAは購買前の心理プロセスと記憶を重視しています。AIDMAは消費者が購入に至るまでの詳細な心理プロセスを分析するために適用されます。 ダブルファネルとは? また、「ダブルファネル」という概念についても学びました。これは、パーチェスファネルとインフルエンスファネルを組み合わせたもので、消費者の行動をより詳細に分析することができます。パーチェスファネルは、商品認知から購入までの過程を表し、インフルエンスファネルは購入後の情報発信までの過程を示します。この分析を通じて、顧客行動のボトルネックを特定することが可能です。 クリック率はどう見る? デジタルマーケティングにおいては、クリック率やコンバージョン率の分析が非常に重要です。例えば、当社のWEBサービスのFAQメンテナンスでは、汎用性の高い回答を用意し、0件回答率とミスマッチの原因を分析しています。これにより、顧客満足度の向上を図ることができます。また、掛け合わせたデータを用いて、NPS(ネットプロモータースコア)の向上方法も模索しています。 実務にどう活かす? これらの知識を実務に活かすことで、FAQの分析やマーケティング施策の改善に役立てていきたいと考えています。

戦略思考入門

高視座で実践する経営の論理

今週の学びって何? 今週の学びを振り返ると、三点が特に印象深かったです。 どうして視座を高く? まずは、視座を高く保ち意思決定することの大切さです。個人の意見や主観だけでなく、幅広い情報に基づいて判断するために、フレームワークの活用が有効であると理解しました。たとえば、目の前の現象だけではなく、その背景や外部環境に目を向けることが、選択肢を広げることに繋がると感じています。これは、以前学んだある事例とも結びついており、実際の経営戦略や事業戦略の現場での活用が今後の課題です。 なぜ整合性が必要? 次に、議論における整合性を取ることの重要性を学びました。会議などでは、議題に含まれる各要素間のバランスや、会社方針、時間軸といった複数の側面から整合性を考える必要があります。一つの正解がないことを再認識し、なぜズレが生じるのかを分析し、軌道修正を図ることが求められていると感じました。 学びをどう実行? そして、インプットだけでなく学びを実際の行動に落とし込むことの重要性です。知識は単に理解しただけでは定着しにくく、具体的な場面でどのように活用するかを決め、行動に移すことが不可欠だと痛感しました。 行動習慣はなぜ大切? 具体的な行動としては、意見を求められた際に一段階高い視点から考える習慣をつけることが挙げられます。たとえば、上司ならどう判断するか、プロセス全体で優先すべき項目は何か、全体最適をどう捉えるかといった思考を日々意識していきたいです。また、各部門の報告会では結果だけでなく、その要因の背景をしっかり把握し、外部環境の変化にも敏感になるよう努めたいと考えています。 論点ずれ、どう直す? さらに、議論では常に論点がずれていないかを確認し、ずれている場合は原因を整理して速やかに修正することが理想です。今はファシリテーションの機会が少ないものの、まずは自分の中で論理を整理し、経営会議や取締役会での資料を通じて、目的や施策、そして会社方針との整合性を意識する視点を育てることが大切だと感じました。

クリティカルシンキング入門

実務に活かす!切り口探求の記録

授業の成果は見えてる? ライブ授業では、知識がまだ十分に定着していないと実感しました。初めの週の振り返りを通してその点を再認識するとともに、ある事例のワークでは切り口を見つけるのに非常に時間がかかりました。初めて取り組む内容だったため、ビジネスの現場において同じケースはほぼ存在しないという考えに至ったのは、良い学びだったと感じています。 分解手法の実践は? 分解の手法については、日々の業務や気になるニュースに対して実践を重ね、より定着を狙っていくつもりです。また、今回の事例は身近な体験であったこともあり、理解の助けになりました。しかし、施策のまとめにあたっては、情報の整理や抽象化する力の不足を痛感し、今後の課題として捉えています。 業務での応用はどう? 業務へのあてはめでは、まず月次実績の振り返りに分解の手法を活用しようと考えています。会議やミーティングでは、目的やゴールを再確認し、論点を明確にすることで、各参加者の立場を意識しながら進められるよう努めます。授業での学びを活かし、どのイシューに対するアクションプランなのかを意識して取り組みたいと思います。 学びの定着を実感? 学びを定着させるため、振り返りと実践を習慣化する行動計画も立てています。まず、記憶が断片的になっている点や整理しきれていない事項について、初めの週からの学びを再実施し、ノートをまとめ直します。さらに、日々の意識向上のためにスケジューラーのリマインダー設定も見直します。 実践の成果は見える? 実践面では、日々の業績確認の習慣として、売上の全体だけでなくカテゴリー別やブランド別に分解して確認する方法を導入し、月次実績にも応用していきます。会議の際は、日時が決定次第予定に反映し、目的やゴール、論点などをメモ欄に記載して意識を高めるとともに、ロジックツリーを用いて思考の整理や分析力の向上にも努めます。さらに、発信する内容および依頼された内容も、最初の目的とそのプロセスを常に意識しながら取り組む所存です。

データ・アナリティクス入門

挑む学び!仮説が広がる瞬間

課題と仮説の意義は? 今週は、課題設定と仮説構築の重要性について学び、サンプルデータを用いた実践を行いました。課題を具体的に明確化することで、その後の仮説の精度が向上することを実感しました。また、立てた仮説に固執せず、検証結果に応じて柔軟に視点を変えることの大切さにも気づかされました。仮説が立証されなかった場合には、別の原因を積極的に探る姿勢が求められます。 なぜ業務は偏る? 営業店の業務負荷にばらつきがある場合、単に「業務量が多い」という理由で負担が大きいと判断するのではなく、どの業務が集中しているのか、フローに非効率な点があるのか、人員配置に偏りがあるのかといった具体的な仮説を立てた上で、必要なデータを特定し検証することが重要です。仮説を基に、どのデータを取得し、どのようなグラフで可視化するかを事前に整理することで、分析の精度が高まります。たとえば、営業担当者ごとの業務時間の偏りを分析する際、移動時間の長さや業務の種類が要因となっているかを検証するために、ヒストグラムや散布図の活用が考えられます。 定量指標は何故大切? 課題設定の精度向上には、定量的な指標を明確にすることが不可欠です。業務負荷の偏りを評価する場合は、「1人あたりの業務処理件数」や「1件あたりの処理時間」を指標とし、営業成績の低迷については「訪問件数」や「折衝時間」、「成約率」を基に状況を把握します。現場の意見をヒアリングし、課題感を共有した上で、分析すべきデータを整理することで、的外れな分析を防ぐことができます。 現場の意見は鍵? また、仮説構築とデータ収集の精度を高めるためには、複数の仮説を立て、どの仮説が有力かを検証する手法が有効です。たとえば、「営業成績の低迷要因」として、訪問件数の不足、折衝時間の短さによる十分な説明ができていない、または高額商品の偏った営業活動といった仮説が考えられます。とりわけ、営業活動に関する領域知識が不足している状況では、現場からの意見を積極的に取り入れた仮説設定が必要だと感じました。

データ・アナリティクス入門

繰り返しが生む新たな発見

繰り返しの学びって? 全体を振り返ると、何度も同じ内容について整理し、記述を繰り返すことが学習において非常に重要であると実感しました。このプロセスの意味を学習テーマとは別に考えることで、新たな学びを得る機会となりました。 仮説疑問はどう? コースの初めに、「仮説とは何か」という疑問を持ち、データ分析のアプローチが状況により異なることを知りました。すでにデータが存在する場合と、データが無い場合では、分析に至る過程や組み立て方が大きく異なります。 既存データの活用は? 先にデータが用意されている場合は、目的を明確にした上で、データの特徴を探り、どの要素を比較するか、どのような傾向や動きを把握するかを平均、標準偏差、相関などの分析手法を活用して明らかにしていきます。その結果、見えてきた情報を体系的に整理することが可能となります。 無データの場合は? 一方、データが先に存在しない場合は、まず解決すべき課題や手がかりを見つけ、その観点に沿ったデータを収集します。具体的には、What-Where-When-Howという視点を順に確認し、マーケティングの基本的な枠組みを参考にしながら、適切なデータを取得し、課題を明確化するプロセスを進めます。その際、解決策や成功の可能性も同時に検討していきます。 記述重ねる理由は? また、同じ質問に何度も答え、記述を重ねる過程の意義についても改めて考えさせられました。学んだ内容が蓄積される中で、実際の業務にどのように適用できるかを具体的にブラッシュアップする必要があると感じました。 分析手法の見直しは? Q1では、分析に対する取り組み方を整理することができました。特にデータが既にある場合は、データを加工するための手法と知識が不可欠であることを再認識しました。しかし、今回のコースではその実践的な部分までは触れていなかったため、過去の振り返りと同様の記述となりました。今後は、実際に手を動かしてデータを扱う内容を学ぶ必要があると感じました。
AIコーチング導線バナー

「知識 × 整理」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right