クリティカルシンキング入門

具体的な問いが会議を変える

議題はどう定める? 問いを明確にし、常に書き留めておくことの重要性を実感しました。特に会議の場で「~について」という曖昧な議題を出していたことに気づき、何を相談したいのか具体的にすることで、有意義な議論につながると感じました。 会議の目的は? 会議や課題解決に取り組む際、何について考えているかを見失ってしまうことはよくあります。集中していると目的がぼやけるため、会議では必ず議論する内容を表題として残すなど、工夫が必要だと改めて思いました。また、課題解決のために情報収集を行い、エクセルなどで集約する際も、統一した表題で課題を明記しておくと、全体の目的が明確になり助かります。 議論の焦点は? さらに、各シーンにおいて問いを明確にする工夫が求められます。たとえば、会議では自分や他の方が挙げる議題に対して、まず何を相談したいのかという問いをはっきりさせることで、議論の焦点を絞ることができます。アンケート結果を元に施策を検討する際も、アンケート自体が目的にならないよう、何を解決したいのかを明確にし、分析段階で本来知りたかったこと、実現したかったことを見失わずに次のアクションを検討する流れにつなげることが大切です。 企画はどう貫く? 商品の企画・立案においても、世の中の不満を解決するという初志を常に意識することで、製品開発の過程で目的が逸れてしまうことを防ぎ、コンセプトの一貫性を保つ効果があると感じました。 目的と問いはどう? 総じて、議題は「何を相談したいか」を明確にし、問いは常に視界に入る場所に記録しておくことが重要です。また、情報収集時には目的と仮説をしっかり立てた上で実施し、関係者間で共通理解を図るために問いを共有する工夫が必要だと考えます。

データ・アナリティクス入門

ABテストで見える進化の軌跡

どうプロセスを分解する? どこに問題があるかを明確にするため、プロセスを段階ごとに分解することが重要です。まず、問題発生箇所(Where)を複数の切り口で特定し、それぞれに対してABテストを実施することで仮説検証を行います。こうした手法は、効率的なコストパフォーマンスに寄与すると同時に、その後の具体的な取り組み(HOW)を事実に基づいて策定するために欠かせません。 どうデータを把握する? 私は製薬会社でMRを担当しており、担当エリアの製品が伸び悩んでいる状況をデータ分析によって明確に把握しました。売上や市場シェアの推移を詳細に検証することで、次のアクションに向けた具体的な問題点の特定が可能となりました。たとえ、担当者固有の感覚や直感に頼りがちな部分があっても、事実ベースの行動こそが仮説検証を丁寧に進める鍵であると実感しています。 何が効果的なABテスト? 具体的なABテストとしては、Aパターンではメディカル専門部署との同行訪問を実施し、Bパターンでは他施設での成功事例を共有する取り組みを行いました。一定期間のテストを経て、どちらのアプローチがより効果的であったかを定量的に評価し、その結果を基盤に最適な施策をエリア全体に展開する方向性を見出すことができました。 どう成長を促進する? 担当エリアの製品成長を促進するための手順は、まず現状把握として売上や市場シェアを分析し、成長が停滞している顧客層を見定めることから始まります。次に、影響力のあるキーパーソンや波及効果の大きい対象をリストアップした上で、仮説を設定しABテストを実施します。その後、テスト結果を定量的に比較し、最も効果が高い施策をエリア全体に適用し、次のアクションに反映させるという流れで進めています。

マーケティング入門

顧客の潜在ニーズを掘り起こす秘訣

成功のための顧客理解とは? 今週の事例では、顧客の隠れた真のニーズを深堀し、自社の強みを活かした製品を製造・販売することがヒット商品の成功要因だと実感しました。キャッチーなネーミングも販売を後押しする重要な要素です。また、最後の動画で「ビジネスチャンスのタネがなくなっている」や「今後AIが進化し、仕事がなくなるのでは?」といった懸念についても触れられていました。私も同様の懸念を抱いていましたが、動画を通じて、環境が変化すれば人々のニーズも変化し、そこにビジネスチャンスが生まれることを知りました。今後、顧客視点に立ち、敏感にニーズを察知し、深堀することの重要性を改めて感じました。 顧客のニーズをどう捉える? 「顧客自身が欲求に気付いていないため、単純な質問ではうまくいかない」という点は特に印象に残りました。実際にツール開発のための要望アンケートを提案していましたが、うまくいかない理由が手法の誤りにあると気付きました。顧客のニーズをヒアリングやアンケート、グループインタビューだけでなく、行動観察といった多角的な視点から捉えることが重要だと感じました。 次のステップで何をすべき? 今後取り組みたい具体的なアクションとしては、以下の点に重点を置きます。 - 常に「なぜそのように思うのか?」や「本当にそれが物事の本質なのか?」を考える癖をつける - 会社が提示する自社の強みについて、他にもないかを考える - 社内で議論し、新しい付加価値を顧客に提案する - 自社商品のカスタマージャーニーを実践する - 他業種のニーズを考え、自分自身で分析する癖をつける 以上のアクションを通じて、顧客視点を持ちつつ、自らの分析力を高めていきたいと思います。

戦略思考入門

スキルを活かした業務改善の冒険

規模と範囲の違いは? 規模の経済性と範囲の経済性について学びました。規模の経済性は、現在の業務においても馴染み深いものであり、生産を拡大してコストを削減し、生産効率を向上させる手法です。一方で、範囲の経済性は複数の製品やサービスを同時に生産することでコストを低減する方法です。そのコストダウンのアプローチにはデメリットもあるため、目的に応じた選択が重要です。 演習で何を実感? また、最後の演習では、与えられた数値や資料を基に仮説を立て、その仮説の正しさを検証することから始めました。この過程で、粒を出すことまではできても、それを整理するためのフレームワークの活用がまだまだ不十分であると感じたため、分析能力の向上が必要だと痛感しました。 中長期戦略はどう? 今後の中長期的な視点としては、新規事業への挑戦時に学んだ内容を活用します。新たにBPO・BPR事業に参入する際には、3C分析、SWOT分析、PEST分析を活用し、目的に合わせた組織形成や業務設計を提案することを目指します。 課内改革は何から? 短期的には、課内の組織編制の検討に学んだフレームワークを活用します。現在の業務における課題を明確にし、その課題解決のために適切な組織形態を提案できるようにしていきます。 分析の始め方は? 分析においては、定量的なデータが多いほど効果的であるため、定性的なデータも可能な限り定量化していくところから開始します。また、定性的なデータにおいても進捗が確認できる指標を検討し、目的やKPIを設定します。この設定に当たっては、現状把握を正確に行い、そのための課題や解決策を設計するために学んだフレームワークを活用していきます。

データ・アナリティクス入門

未来を切り拓く!仮説思考の力

仮説はどう整理する? 複数の仮説を立てる際には、その網羅性と分類が重要です。過去の失敗を分析する場合や、将来の事業の成功を予測する場合には、3Cや4P分析を活用して仮説を立ててみると良いでしょう。 データ収集はどうする? 仮説を裏付けるためのデータは常に存在するわけではありません。必要な情報を収集する場合、誰に何をどのように聞くべきかを慎重に考える必要があります。都合の良い情報だけを集め、他の可能性を排除しないようにする意識も大切です。この姿勢は「関心や問題意識のないところに仮説は生まれない」というマインドセットにも通じています。 市場特性の見極めは? 3Cや4Pの視点で現在のビジネス状況を正しく理解することが不可欠です。しかし、市場や業界、製品が特殊な場合には注意が必要です。例えば、医療業界ではエンドユーザーが患者であり、購入決定権を持つのは医療者であるケースがあります。広告制限のある製品については、適切な顧客設定と検証が必要です。自社だけでなく、関わるグループ施設市場を含めた3C、4P分析も有効です。 3W1Hで速さは向上? 仮説の3W1Hを繰り返すことでビジネススピードが向上します。過去と未来の仮説を分けて分析し、サイクルを回すことが必要です。たとえば、大型コンペの参加が有効だったか、その前後の効果や成功の分析、次回の見込みや採用率の変化が周囲に与える影響の予測を行います。 Excel作業改善のコツは? データの比較基準が異なる場合、データの取得、加工、単位や見え方の統一が課題になります。実際の分析開始前の準備段階でのExcel作業に多くの時間を費やすことが課題となっているため、この点のスキルアップが必要です。

戦略思考入門

守りと攻めが共鳴する現場戦略

安全と生産の秘訣は? 自動車業界における安全性、特に保安部品の長年の取り扱い実績を土台として、製品の幅を徐々に拡大している点が印象的でした。現状では、工場や設備を活用して他社よりも大量生産を実現する低コスト戦略と、新たな製品開発による差別化を両立させています。特に、近年の自動化や電動化の流れに対応するため、電気電子の技術を組み合わせた車づくりや部品開発がリーズナブルに行われている点は非常に理解しやすいものでした。 多様化市場でどう挑む? また、最近の市場環境では自動車購入者が減少し、顧客のニーズが多様化していることから、購買力の高い世代を中心にターゲットを絞った戦略が取られている印象を受けました。伝統的な単一戦略に固執せず、時代の要請に応じて柔軟に戦略を見直していく姿勢は、全体として適度なリスクヘッジがなされていると感じます。 既存設備の活かし方は? 変化が絶えず続く中で、既存の大量生産設備をどのような商品企画に活かすかが大きな課題です。共通部品ではなく、個別仕様の製品が増えると固定費が増大するリスクがあるため、製品ラインナップの分類が極めて重要だと考えました。私が所属する部署では差別化を進める業務に従事していますが、既存製品とのシナジー効果を改めて検証し、各戦略について自分なりの見解と分析を深める必要性を感じました。 攻守両立の秘訣は? 今一度、苦戦している事業部の製品を見直し、差別化技術で解決の糸口がないか検討したいと思います。撤退するのは容易ですが、長年培ってきた経験と実績を築くのは困難です。攻める戦略だけでなく、守る戦略としての差別化を武器に、部門の一員として今後も貢献していきたいと強く感じています。

戦略思考入門

顧客の本音で磨く戦略

顧客が選ぶ理由は? 顧客に選ばれることがビジネスの成否のスタート地点であると再認識しました。顧客のニーズを深く理解するとともに、競合他社の情報収集と分析を通じ、自社との差別化ポイントを明確にすることが重要だと感じました。 施策の効果はどう? また、差別化施策を実施する際には、その施策が本当に効果的かどうかを慎重に確認する必要があると学びました。マーケティングの3C分析では、特に他社の情報について、製品、サービス、スタッフ、チャネル、イメージの5つの要素を漏れなく把握することが大切だと理解しました。 戦略の選択はどう? さらに、Porterの基本フレームワークでは、「コスト・リーダーシップ戦略」「差別化戦略」「集中戦略」の中から自社に有効な戦略を選択する必要があると知りました。一つの戦略に固執せず、場合によっては二つの戦略を組み合わせることも有効であり、経営環境に応じた柔軟な戦略見直しが求められていると感じました。特に、コスト・リーダーシップ戦略と差別化戦略の両立については、自社でも検討すべき点だと思いました。 分析で見える強みは? さらに、VRIO分析を通じて、競争優位性の源泉や、組織面での強みを再評価する良い機会となりました。自社の戦略見直しにあたっては、現在の差別化戦略のみならず、コスト・リーダーシップ戦略の有効性も検討し、ファイナンシャル情報を基にコストの分析や価格戦略の見直しを提案していきたいと考えています。 競争優位伸ばすには? 加えて、VRIO分析で特定された自社の競争優位性の強みをさらに発展させるため、組織面の課題に対しても、業界内外での人材獲得競争に勝つためのプランを策定し、提案する所存です。

クリティカルシンキング入門

データ分解で見つける新しい視点

データ分解の必要性は? 今週の学習では以下の点について考察しました。まず、データを分解する際には、さまざまな視点からの切り口を持っておくことが重要です。データの分解方法や細かくするやり方によって、データの見方は大きく変わり、傾向や仮説が立てやすくなります。また、多面的な視点でデータを分解することも必要です。MECE(漏れなく、ダブりなく)を用いて検証することは基本ですが、さまざまな角度から分析することの重要性を感じました。さらに、データの可視化も重要であり、グラフなどを使うことで傾向の見方が大きく変わるため、積極的に用いていきたいと考えています。 業務へどう活かす? これを自分の業務に当てはめると、以下のようになります。データを単に表にまとめるだけでなく、詳細に分解したりグラフ化することで、関連性の洗い出しに役立てられると考えます。具体的には、開発中の製品の物性データ解析を行い、改善に必要な影響因子を洗い出したり、売上と在庫のデータ推移を国やユーザーごとに解析し、仮説立てに活用したりします。また、文章データを整理し、プロセス解析と分類分けによる分析を行います。 分析に多角視点は? データ分析や分解については、自分だけで行うのではなく、他の人にも確認をお願いし、異なる視点や着眼点を参考にして分解のバリエーションを増やすよう心がけます。データを取得する際も、従来の方法にとらわれず、「本当に必要なデータなのか」という視点を意識して行います。過去のデータとの関連性も考慮に入れ、有用なデータ取得を目指します。結果に対しては、「本当か?」といった問いを繰り返し、別の視点での傾向の可能性を確認することも重要です。

データ・アナリティクス入門

データ分析で経営に革命を起こす方法

標準偏差をどう理解したか? データを分析する際に使用する数値(平均値、中央値、標準偏差)について、特に標準偏差については名前を聞いたことがあってもよく理解していなかったが、今回の学習でよく理解できた。2SDルールを使うと、大体の平均値が分かることも印象的だった。また幾何平均についても学べてよかった。恥ずかしながら、これまで売上の成長率をデータを目で見た大体の数で算出していたため、売上予測を立てるのに幾何平均が大いに役立つと実感した。調べたところ、エクセルでは標準偏差はSTDEV.P関数、幾何平均はGEOMEAN関数を使うと算出できるようだ。 より的確な売上予測を立てるには? まず、目標設定のために売上予測を立てること。また、各製品のポテンシャル予測にも活用できそうだ。さらに、自社サイト会員数の分布を散布図を使って確認することができると思った。ニッチな業界のためこれまで分布を確認したことがなかったが、年齢や勤務地等でデータを分析してみると面白そうだ。 各製品の成長率を比較する方法は? 次に、扱う製品と市場の性質上、月毎の売上に大きなばらつきがあるため、年ごとにまとめるのでは効果的な数字が得られないと考える。そのため、各製品の月毎の売上を、過去の3-4年と比較することで成長率や今後の伸び率が確認できそうだ。また、例えば月1以上ログインしている会員の年齢を5年くらいごとに区切ってヒストグラムに示す、あるいは企画ごとに図式化することで、どの企画がどの年代に刺さっているのかが分かりそうだ。 有用なデータ分析を期待するには? これらの手法を取り入れることで、より具体的で有用なデータ分析ができると期待している。

戦略思考入門

本質を探る革新への一歩

差別化の意義は? 差別化とは、ライバル製品やサービスとの差を明確にし、顧客に自社を選ぶ理由を提供することです。まず、顧客にとって本当に価値があるかどうか、また自社の資源でその価値を長期間維持できるかが重要なポイントとなります。さらに、他社が簡単に模倣できない持続性のある差別化が求められます。 新たな切り口は? この考え方を進める上で、ありきたりのアイデアに飛びつかず、他の業界などからもヒントを得ながら、広い視点で検討することが大切です。また、自社の強みをしっかりと認識し、必要に応じて外部の力も借りることで、多様なニーズに対応できるバリエーションを確保し、リサーチ能力を高めていく必要があります。さらには、ライバルを過度に意識せず、全く新しい切り口での差別化を目指すことが求められます。小さな違いではなく、根本的な革新に挑む姿勢が重要です。 DXと自分の未来は? 昨今のDX化やAI技術の進展により、環境の変化に対してただ追随するのではなく、独自性を発揮することが必要となっています。これは単に製品技術の話だけではなく、個々人が自らの強みを理解し、どのような仕事で価値を出していけるかという点にも通じています。 そのため、まずは時代や環境の変化を整理し、自分の領域にどのような変革が求められているのか、また不足している人材や能力は何かを明確にすることが重要です。その上で、自分の強みを最大限に活かせる分野や、研修や講習を通じて更なるスキル向上が望める分野を選定します。そして、すでに自分の強みが生かせる部分に関しては、積極的に担当の提案を行い、周囲と合意形成を図ることで、組織全体の成長につなげることが期待されます。

データ・アナリティクス入門

業務の混乱をデータ分析で解消する挑戦

データ分析は日常にも必要? データ分析は、ビジネスだけでなく家電製品の購入など日常生活でも無意識に行われており、身近な行動の一部です。ビジネスの場では、定量分析が非常に有用です。一方、日常生活では感覚や好みなど定量化できない要素も分析項目になり得ます。 データ分析の目的とは? 重要なのは、データ分析は目的ではなく、目的達成のための手段であるという点です。ただ数値を比較したり並べたりするだけではなく、データに解釈を加えることで初めて目的に沿った活用が可能になります。したがって、他の業務と同様に、データ分析の際にも目的を考えることが大切です。また、分析したデータを使用する相手と目的を確認することも重要です。 職場のデータ環境は? 現在の職場では、データ分析を行いながら業務を進める人がほとんどいません。業務の担当も定まっておらず、情報を共有する環境も整っていないため、分析に必要なデータが揃っていないと感じています。入社して半年経ちますが、過去のデータ(案件、契約金額、契約終了後の顧客評価など)や取扱製品の情報が一覧になっておらず、それぞれの資料を見るか人の記憶に頼るしか方法がないことに難しさを感じています。 必要なデータの収集方法は? まずは、分析に必要なデータを集めて整理することが必要です。その後、競合との差別化や取引業者の選定など、目的を設定した上で必要なデータ分析を行います。具体的には、人の記憶に頼っている情報を可視化し、自分が入社してから苦労してきた過去のデータや取扱製品の情報を整理します。その上で、現在の会社の課題を意識し、その課題解決のために必要な分析を進めていきたいと考えています。

データ・アナリティクス入門

広い視点で仮説を立てるコツ

なぜ複数の仮説が大切? 仮説を立てる際の重要なポイントはいくつかあります。まず、確からしい仮説がある場合でも、それに固執せず、複数の仮説を立てることが大切です。また、異なる観点から仮説を立てることで、見落としを防ぎます。特にフレームワークを活用することによって、網羅的に仮説を立てることが可能です。例として、3Cや4Pのような方法がありますが、分類に自信がなくても、広い視点で考えることが目的ですので心配ありません。 データ収集で何を探す? データ収集においては、比較対象を意図的に選び、反論を排除するための情報まで集めるようにしましょう。仮説を簡単に切り捨てないことがポイントです。 どうして視点を広げる? 売上が低迷している商品のリニューアルや新商品のコンセプト評価が思わしくない場合、特に3Cの観点から原因仮説や戦略仮説を立てることがあります。その際、視点が狭くならないよう、予測可能な答えをいったん頭から離し、第三者の視点で仮説を立ててみることが重要です。また、「顧客」と「競合」といった視点での分類に迷うことがありますが、分類自体に注力する必要はありません。仮説を排除した際の理由をデータで示す必要があるので、安易に仮説を切り捨てないようにしましょう。 フォーマットで何を改善? 仮説立てのフォーマットには、仮説を切り捨てた理由を記載する項目を設けることが有用です。また、「製品」に関しては、3Cだけでなく、「パッケージ」「味」「価格」なども考慮に入れたフォーマットに変えるのが良いでしょう。フレームワークを活用しても、一人では限界があるため、他部署の方々の協力を得ることも効果的です。

「製品」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right