データ・アナリティクス入門

データ分析が変えるビジネスの未来

分析を成功させるためには? ライブ授業を通して、次の3点を改めて整理できました。 まず、分析は比較によって成り立つということです。目的とアウトプットを明確にしてから分析に取り組むことで、闇雲な作業を避けることができます。 問題解決のステップをどう活用する? 次に、問題解決のステップ(What-Where-Why-How)の重要性についてです。当日の演習を通じて、これを実際に活用するイメージがつかめました。各ステップでは、目的を明確にし、ロジックツリーの活用や仮説設定、データ収集方法、データの見せ方などのポイントを整理しました。 データ分析から得た新たな発見とは? 最後に、分析のステップとして、検証したいことを具体的にし、仮説を立て、何と比較するかを意識しながらデータを集め、加工してビジュアル化することで、新たな発見が得られることを再確認しました。 また、データ分析の活用については以下の3点が挙げられます。 1. 企画立案時のマーケティングプロセスにおけるデータ活用 現状では、企画立案が現場の勘や経験に偏りがちですが、データを用いることで、より良い意思決定や施策運営につなげたいと考えています。さらに、他の施策との比較や過去のデータ分析を通じて課題点を洗い出し、マーケティングプロセスを改善していきます。 2. 施策振り返り時の検証 施策を振り返る際には、実績に対する問題や課題を明確にし、次の意思決定のために仮説を立てて検証することが重要です。 3. 課題解決に向けた活用 具体的な課題が提示されたときは、問題解決のステップと仮説検証の考え方を用いて取り組んでいきます。 学習方法の見直しがもたらした効果 これらの活用方法を通じて、アウトプットを進めていきたいと考えています。 さらに、本講座の復習をしっかり行い、学んだことを言語化しアウトプットできるようにし、問題解決ステップや仮説思考、フレームワークを実務に取り入れて練習します。自然に使いこなせるようになることを目指します。また、周辺知識の学習も継続的に進めていきます。データ活用にはクリティカルシンキングや伝える力、マーケティングに関する知識が必要で、今回自分に合った学習方法が見えたのも大きな収穫です。 今年度の目標達成に向けた取り組み 今年度は、施策の乱立を防ぎ、効率的な施策運営のために可視化データを作成し、リソースを他の業務に割けるようにしていきたいと思います。そして、掲げた目標に向けて努力を続けます。

データ・アナリティクス入門

仮説で拓く学びの道

分析の基本は何? 本資料は、分析を比較の視点から行い、仮説思考を持って問題に取り組むための考え方と手法を示しています。分析の要点として、プロセス、視点、アプローチの三つの軸が必要とされ、各軸が互いに補完しながら、より深い理解を促すことを意図しています。 プロセスをどう考える? プロセスでは、まず目的や問いを明確にし、その問いに対する仮説を立てます。次いで、データを収集し、分析によって仮説を検証するという流れが求められます。 視点と工夫は? 視点については、インパクト、ギャップ、トレンド、ばらつき、パターンといった観点からデータを捉え、それぞれの側面から情報を整理していきます。一方、アプローチでは、グラフ、数字、数式などを用いて、情報を視覚的かつ計量的に表現することで、理解しやすくする工夫が大切です。 可視化はどう? 比較のための可視化手法としては、データの特徴を一つの数字に集約する方法、グラフ化して目で捉える方法、そして数式に集約するアプローチがあります。これにより、データの持つ意味がより明確になります。 代表値は何? また、データを見やすくするためには、代表値と分布の確認が有効とされています。代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、一方、ばらつきを見るためには標準偏差が活用されます。特に、95%のデータが含まれるという2SDルールは、分布の確認において重要な指標となります。 契約単価の意味は? 具体例として、【1】の契約単価の場面では、相加平均を用いた結果、受注率などの違いが十分に反映されず、平均値が大きく見えてしまうという事実が挙げられます。そのため、加重平均を用いることで、感覚に近い平均単価が算出できる可能性が示唆されます。 成長率はどう考える? また、【2】の成長率の場面では、合計の成長率を足して年数で割る方法が用いられていましたが、こちらは幾何平均を利用するアプローチが適切です。具体的には、(1+x)^2=◯年後の売上/スタート年の売上という考え方に基づく計算が求められます。 計算見直しは? これらの考え方を踏まえ、Q2では【1】と【2】の実際の計算を見直し、過去に作成したデータを再評価する行動を取る必要があります。また、平均値の計算方法一覧を見える場所に保存し、必要な際にすぐに確認できるようにすることで、定着した学習行動が実現されることが期待されます。

データ・アナリティクス入門

グラフと平均値で掴む分析術のコツ

グラフは何を示す? グラフの活用法とその分析時の手法について考えます。まず、円グラフは各要素の割合を確認したい場合に使用します。一方、ヒストグラムは全体のばらつきを視覚的に把握したい時に便利です。グラフを活用する際は、事前に仮説を立て、その仮説に基づいて予測データと実際のデータを比較し、深堀することが重要です。 平均値はどう使う? 分析手法としては、様々な平均値があります。単純平均はただ平均値を求める方法です。加重平均は重みを考慮して算出され、例えば東証株価指数がこの方法を用いています。幾何平均は成長率や平均何倍になるかを知りたい時に使用されます。外れ値の影響を避けたい場合は中央値を用いるとよいでしょう。また、標準偏差を利用することで、データのばらつきを把握できます。標準偏差が小さいほどデータは均一であることを示します。これに基づき、2SDルールでは95%のデータが大よその範囲内に収まるとし、5%のデータは外れ値とされます。 リスクはどう把握? 施設のポテンシャルや価格の分布を分析する際には、ヒストグラムや散布図を使うことで、戦略に対するリスクを特定できます。例えば、ポテンシャルの高い施設で高コストの外れ値がある場合、戦略的値下げの必要性を検討する余地があります。また、小さい施設で安価なコストの外れ値はベンチマークとして他施設に引き合いに出されるリスクとなる可能性があります。 医療データの精度は? 医療機器のデータ精度を分析する際、標準偏差を利用して精度の精確性を確認することができます。業界の標準として、変動係数CVが2%以下であれば精度の担保がされているとされています。変動係数は標準偏差を平均値で割ることで算出されますので、まず標準偏差を求める必要があります。特に機器の精度が外れ値を持たず、許容範囲内に収まることが求められるため、標準偏差の知識は重要です。 適正価格はどう算出? 価格交渉の際、統一グループやGPO施設カテゴリ内の平均価格やベンチマークの引き合いがあります。この際、どの「平均」が使用されているかを確認し、データを鵜呑みにせず、グラフや散布図、加重平均や中央値を用いて適正価格を示すことが重要です。 仮説はどこから? 最後に、分析に取り掛かる前に仮説を立てることが大切です。仮説に正解はありませんが、経験に基づいた想像力を活かし、いくつも仮説を洗い出すことが有益です。

データ・アナリティクス入門

思考のクセを正し、問題解決力を高める方法

問題解決のステップをどう活用する? 問題解決の4つのステップ、すなわちWhat(問題の明確化)、Where(問題箇所の特定)、Why(原因の分析)、How(解決策の立案)を学びました。私の思考のクセとして、Whatを決め打ちしてしまうことや、Howの展開に意識が向きすぎることがあります。そのため、Whatに関しては目の前の課題が全体構造のどこに位置づけられているのかを確認するよう意識しています。Howについては、Whatの構造を理解し、Where→Whyを経てしっかりと導き出すことで、数ではなく説得性と精度を高めていきたいと考えています。 A/Bテストを成功させるには? A/Bテストについては、比較検証を目的とするため、以下のポイントを理解しました。 - 複数の要素を同時に変えると検証が難しくなるため、このようなことは避ける。 - 同列で比較する必要があるため、期間・ターゲットなど条件をできるだけ揃える。 - 低コストで実施できるため、トライ&エラーを重ねて精度を上げていく。 購入者定着の課題をどう解決する? 「商品Aの購入者定着」という課題に対しては、一旦立ち止まって状況を整理しました。例えば、購入者定着を要素分解(要素集約)すると、上位階層に売上向上という課題があります。本質的な課題としては、「売上向上があり、分解すると新規と定着に分けられ、データで補足すると新規の向上が売上の変数として大きく影響する」という課題に変わる可能性があると捉え、4つのステップを視野を広げるためと、要素を絞り込んで確度を上げるために活用していきます。 広告効果の測定には何が必要? ABテストは広告の売上効果を測る際に用いたいと考えています。しかし、売上に関わる変数(広告外のプロモーションや価格など)が多いため、「広告だけの効果」を測るのが難しいです。この点についてアドバイスが欲しいです。 課題特定を円滑にするには? 現在取り組んでいる各部署の伴走案件において、上記の4ステップを課題特定に活用しています。会社上層部からの指示や慣習などから使用するデータや活用方針がある程度決まっているため、他の選択肢を持てない方もいます。そういった場合、一度立ち止まって課題の要素分解を行うよう促しています。月内に7つの案件があるため、事前に各部署の業務理解を深め、広い視野で課題を捉えることを意識して伴走します。

クリティカルシンキング入門

目的を明確に!効率的な問題解決法とは?

学びを日常にどう活かす? これまで学んできた内容を全体的に復習しました。その中で、改めて「目的を明確にすること」と「問いを立てること」の重要性を再認識しました。人間の思考は主観に偏りがちで、そのために本質からそれた部分に焦点を当ててしまうことがあるという前提を持ちました。自分の思考が偏らないようにするためには、まず物事の全体像を把握し、イシュー(課題)を特定することが大切です。そのためには具体と抽象を繰り返し、様々な角度から物事を見る必要があります。この過程でイシューを特定し問題の本質を明確に捉えることが、効率的な情報処理に繋がると改めて感じました。 情報処理の効率化とは? この学びは日常の様々な場面で活用できると思います。たとえば、報告・連絡・相談(報連相)、プレゼンテーション、社内外の会議、問題定義や課題解決時などです。自分の主観で物事を進めていないか、イシューを特定できているかを常に確認していきたいと思います。また、人との業務上の会話の中でも相手がイシューを特定できていない場合に、自分からイシューを明確にすることで会話がスムーズに進むので、この点を意識していきたいです。 効果的な問題解決法は? 何事も着手する前に立ち止まり、「目的を明確にすること」「全体像を把握しイシューを特定すること」「伝える内容と目的を明確にすること」を実践していきます。具体的には次のような場面・行動を考えています。 1. **データ分析の際に仮説を立てる** - 行動: データを単純に見るのではなく、まず全体像を把握し、問いを立ててから分析を行います。問いに基づき、どのデータが重要かを判断し、結果を検証するプロセスを経て分析の精度を高めます。 - 理由: 問いを立て、分解し、結果を検証することで、より深い洞察を得ることができます。 2. **プロジェクトやタスクの問題解決における代替案の評価** - 行動: 問題が発生した際、単一の解決策に飛びつくのではなく、複数の代替案を出し、それぞれのメリットとデメリットを比較検討します。そして最も効果的な方法を選択します。 - 理由: クリティカルシンキングを活用することで、短期的な解決策ではなく、長期的に効果的な解決策を見つけることができます。 これらの行動を日常の仕事に取り入れることで、より効果的で効率的な業務遂行を目指していきます。

データ・アナリティクス入門

データ分析で成果を引き出す方法

CTRとCVRはどう分析? プロセスを段階的に考えることは、データ分析において非常に重要です。例えば、CTR(クリック率)やCVR(購入率)を比較することで、プロモーションの効果を測定します。この段階で、CTRが高い場合はターゲットユーザーに適した場所でプロモーションが行われているか、または掲載しているクリエイティブがユーザーに合致していることが考えられます。同様に、CVRが高い場合は購入を促すことができていたり、サイトのUI/UXが優れている、商品そのものが魅力的であるという理由が考えられます。これらの指標を基に課題を抽出し、改善策を講じることが必要です。 仮説はどう作る? 原因を仮説立てる際には、思考の範囲を広げることが求められます。具体的には、フレームワークを利用したり、反対概念を活用することが有効です。最適な解を見つけるためには、初めに適切な判断基準を考え、それに基づいて評価を進めます。判断基準に重要度の違いがある場合は、重み付けを行い、比較検討を通じて最適な解を選びます。 費用対効果はどう判断? プロモーションの費用配分を検討する際には、有料広告のCTRやCVR、各コストを再度検証し、費用対効果の観点から最終的には投資対効果への移行を考えます。また、メールマーケティングにおいては、ターゲットに適したバナーを見つけるために、ビジュアル、テキスト、クリエイティブの観点からABテストを実施します。 意思決定は合理的? 中長期的には、会社全体で「勘と経験に頼る意思決定」を「データ分析を用いた合理的な意思決定」へ移行することを目指します。このためには、誰でも気軽に分析ができる環境を整え、学びとモチベーションを高め、業務効率化により時間を確保することが重要です。 効果検証はどう実施? 投資対効果を考える上で、判断基準の検討、検証方法の確立、経営層への効果的なアプローチが求められます。メールマーケティングにおけるバナーのABテストの実施例として、秋の行楽シーズンを訴求する際に、ビジュアル面では人物の有無やテーマ、テキスト面では金額や特典、クリエイティブ面では静止画や動画を考慮に入れることが挙げられます。 人材育成はどう進む? また、データ分析における人材を育成するために、社内の教育プログラムを活用し、DX変革を推進するための環境作りも必要です。

データ・アナリティクス入門

数字から見える問題の本質と解決策への道程

分析の本質とは何か? Week1のポイントを復習しました。分析の本質は比較であり、比較する際に注意すべき点は、比較対象を揃えることです。問題解決のプロセスには、What、Where、Why、Howの4つがあります。 問題解決の4ステップとは? まずWhatでは、何が問題なのかを定めます。次にWhereで、問題がどこにあるのかを特定し、あるべき姿と現状のギャップを数字を用いて比較します。この段階ではフレームワークが有効です。Whyでは、なぜ問題が発生しているのかを探ります。そしてHowでは、どのように対処するかを考えますが、すぐにHowに飛びつかないことが重要です。 データ分析の注意点は? さらに、単純な平均値に惑わされず、データのばらつきに留意することが必要です。代表値として平均値、中央値、最頻値をチェックし、ヒストグラムを用いてデータにばらつきがないかを確認します。 仮説の検証方法は? 仮説を立て、その仮説が成り立つかを検証するためにデータを集めます。問題の原因を明らかにするためには、プロセスに分解する方法が有効です。解決策を見つける際には、複数の選択肢を洗い出し、それぞれの根拠をもとに絞り込みます。 チームでのデータ分析をどう進める? こうした復習を行った上で、実践問題に取り組んだところ、数値を見ることや問題の箇所を特定することがかなりスムーズになったと感じました。しかし、複数の回答を絞り出そうとすると視野が狭くなることがありました。データ分析を行う上では、一人で考えるだけでなく、チームメンバーの多角的な視点が必要であると感じました。そのためには、チームメンバーにもデータ分析の考え方を共有し、共通のプロセスを踏むことが必要だと感じました。 お客さまアンケートの分析は? 現在、上半期の施策などの振り返りを行っています。その中で、お客さまアンケートの分析業務が現在のメインの仕事となっています。この分析を通じて、お客さまからの評価のボトルネックとなっている部分を発見し、対策を講じる必要があります。 問題発見と仮説の共有方法は? まずは、問題がどこにあるのかを明らかにするために、関連するデータをビジネスプロセスごとに並べてチーム全員で意見交換を行います。問題の所在が見えてきたら、その原因について仮説を立て、チームメンバーでその仮説を共通認識にします。

データ・アナリティクス入門

対概念で拓く経営戦略の新視点

対概念の意義は何? 対概念とは、ある概念に対して反対または対照的な意味を持つ別の概念を考えることで、物事をより明確に理解し議論の幅を広げる手法です。問題解決に取り組む際は、原因をプロセスに分解する方法、複数の解決策を根拠をもって絞り込む視点、A/Bテスト方式を活用した実践検証、そしてデータ分析を組み合わせた段階的な課題抽出と検証の流れが重要となります。 M&Aリスクはどう考える? 例えば、M&A案件のリスク評価と意思決定においては、ポジティブな要素であるシナジー効果と、ネガティブな統合リスクを対概念として捉え、財務リスク、組織文化、オペレーションといった要因に分解して考えます。各リスク要因を定量化することで、M&A後の成功確率を高めるためのより正確な判断が可能となります。 統合戦略はどれが最適? また、企業の経営戦略策定、特にM&A後の統合戦略においては、段階的統合と急速統合という二つのアプローチを検討し、A/Bテスト方式でそれぞれの効果を比較します。統合プロセスの進捗データや業績、従業員満足度といった具体的な指標をもとに、どちらの戦略がより良い成果を生むかを実証的に評価していきます。 リスク評価の秘訣は? さらに、リスク評価のためのフレームワーク作成では、過去の成功事例や失敗事例をデータベース化し、財務、組織文化、オペレーション、市場環境といった指標を基にリスク評価シートを作成します。これにより、各案件ごとのリスクが客観的に評価され、精度の高い投資判断を導き出すことが期待されます。 定量化結果は何? 続いて、データ分析を用いた定量化では、財務データや従業員エンゲージメント、企業文化の適合度を測る指標を設定し、回帰分析や相関分析を活用します。特に、文化の不一致が従業員の離職率に与える影響などを数値化することで、過去のM&Aデータから成功パターンや失敗パターンを明らかにし、これを次の意思決定に生かすことが可能となります。 結果の信頼はどう確保? 対概念とA/Bテストを通じて物事を深く理解しようとする姿勢は非常に評価できます。今後は、どのような状況で対概念を活用するのが効果的か、またA/Bテストで得られた結果の信頼性をどのように確保していくかといった点について、さらに思考を深めながら実践につなげていくことが求められます。

データ・アナリティクス入門

データ分析で見つける新たな視点

データ分析における比較の重要性とは? データを比較することは、他のデータと比較することでその意味合いを読み取ることにあります。繰り返しになりますが、「分析は比較なり」が重要です。単純な平均では見落としやすい情報を把握するために、データのビジュアル化を駆使し、バラつきを視覚的に理解することが求められます。比較を行い、グラフを解釈することで仮説を立て、その結果として次に分析すべきデータや分析の深掘りの方向性が明確になります。 代表値だけで十分か?アプローチを考える 大量のデータを比較するアプローチについて考える際、代表値の使用だけではデータの分布状況がわかりません。データの分布を考慮するために、標準偏差を併用します。標準偏差が大きければバラつきが大きく、小さければデータが集約していることを意味します。また、データをビジュアル化することも重要です。実際の業務では、加重平均とデータのビジュアル化が主に行われています。 代表的な数値には以下のものがあります: **代表値** 1. 単純平均 2. 加重平均 3. 幾加平均 4. 中央値 **散らばりを表す数値** - 標準偏差:標準偏差が大きいとデータがばらつき、小さいとデータが集約している。正規分布と2SDルールも考慮します。「起こりにくいことが起こっている」という実感値は5%です。 分析の深化にはどのプロセスが必要? 分析の内容に応じた代表値を使い、内容に応じたビジュアル化の方法を考えることが大切です。案件の特徴を「プロセス×視点×アプローチ」で分析することに重きを置くと良いでしょう。会社の施策展開にあたっても、目的に応じた比較を行い、ビジュアル化し、そこから仮説を立てて分析を深めていくサイクルを徹底していきます。過去の導入事例から仮説検証を行い、どの層にヒットしているかをビジュアル化し、現在進めているターゲティングの選定を進めていくことが求められます。 学びの共有はどのように行う? まず、メンバーにWEEK3の学びを共有し、現在取り組んでいる施策のターゲティングに役立てたいと考えています。根拠のあるデータを作成し、より良い意思決定に繋げることが目標です。代表値と標準偏差の仕組みを理解し、必要に応じて使い分けるために、日常の業務に取り入れてみることから始めましょう。

データ・アナリティクス入門

データ活用で未来を切り拓く鍵

目的を明確にする重要性は? 目的を明確にすることと、正しい比較を行うことは非常に重要です。動画の例では、提示された数字をそのまま信じてしまう場面がありましたが、実際のビジネスシーンでも同様の例は多いと感じます。そもそも、その数字は何のために存在するのか?どのような基準で比較しているのか?比較の手法や数字の計算、抽出方法は正しいのか?データの精度や信頼性も重要です。AIの助言を受けて、身近な実例として新聞のチラシやテレビショッピングに出る数字を見て、何を示しているのか粘り強く理解していきたいと思います。例えば、「当社比」とは一体何を指しているのか?私の両親もそのまま鵜呑みにしているようなので、注意したいところです。 戦略経理とは何か? 経理に関しては、記帳や財務諸表作成がAIや外注で可能になると考えています。ただ、仕訳を行い記帳している際に「不思議だ」と思う点があり、そこを深堀りすることで経費や売上を分析し、会社全体が利用できるデータにすることができるのではないかと考えています。「戦略総務」や「戦略人事」という言葉を聞いたことがありますが、「戦略経理」という考え方もあって良いのではないかと感じます。 データ・ドリブン経営をどう進める? 意思決定にはデータの利用が不可欠です。データ・ドリブン経営という言葉が以前からありますが、そもそもデータに基づかない経営が存在するかという疑問が湧きました。実際の現場では感覚や感情に基づく経営が主流でしたが、私が関与する場面ではデータに基づいた意思決定を推進していきたいです。 仕事の目的を再確認する重要性 業務全般において、目的を明確にすることが重要です。これまでの仕事の中で、議事録作成などの業務において何のために行うのかという明確な目的がなかったため、非効率的となっていました。しかし、目的を明確にすることで効率的に正しい結果を得られるようになることを意識したいと思います。 転職活動で心掛けることは? 現在、転職活動中で新しい職場を探している中、今後の行動指針として、意思決定に際しては必ず数字の裏付けを吟味すること、目的の明確化を徹底することを心掛けたいです。また、以前に読んだ本や少しかじった統計検定の内容と重なるところが多いことから、統計学を一度学び直したいと考えています。

データ・アナリティクス入門

ビジネスフレームワークで仮説を確かめる方法を学ぶ

効果的な仮説の立て方は? 今回は、「Why(原因の分析)」について学びました。このステップでも「What」「Where」同様に、複数の切り口を持ち、複数の仮説を立てることが重要だと実感しました。特に、切り口の感度の良さや仮説の筋の良さが問題解決の精度に大きな影響を及ぼすことを改めて痛感しました。高い視座と広い視野を持ち、ビジネスフレームワークを活用して大局的かつ網羅的に複数の仮説を立てることが有効だと学びました。 具体と抽象の使い分け方は? また、仮説の分類として「問題解決の仮説」と「結論の仮説」があり、前者は具体化、後者は抽象化が肝要です。具体と抽象を使い分けて行き来できるように練習することが必要だと改めて感じました。 データ検証のプロセスの重要性は? そして、仮説は検証して初めて意味を持ちます。データを収集し(既存データに不足があれば新たにデータを集め)、指標を定め、その指標で比較できるように適宜データを加工し、段階的に仮説を絞り込み検証を繰り返すプロセスが重要であると学びました。 ツールを活用するために何が必要か? ツールがあることは助かりますが、使いこなせなければ意味がありません。仮説設定やデータ収集・結果の比較を通して「経験や勘による決め打ちや意図的な絞り込み」という負の側面が出ないように、正しいプロセスを意識し、目的に適したツールを正しく使いこなせるように練習を繰り返したいと考えています。 次期事業計画の策定にどう活かす? 次期中期事業計画の策定時には、このプロセスを活用します。「なぜ今ターゲット顧客から選ばれているのか」を深堀りし、仮説を設定してその再現性と競争優位の持続可能性を検証したいと思います。どのビジネスフレームワークを使って仮説を設定し、どの指標で比較し絞り込むかを考え、一つずつ丁寧に進めていきたいです。 客観性と説得力を保つためには? 『経験や勘で導き出した答えの確からしさを、ビジネスフレームワークを用いて正しいプロセスを踏むことで確認する』という意識を持ちながら、フレームワークの選定や指標の設定、データの収集・比較、仮説の絞り込みなどの過程で、経験や勘による決め打ちや結論ありきの意図的なものにならないよう常に意識し、客観性と説得力を担保するように努力します。

クリティカルシンキング入門

MECE法で分かる問題解決の全貌と実践術

状況変化の把握方法とは? 状況の変化を把握するためには、「分ける」ことと「視覚化」がポイントとなります。「分ける」際には、複数の切り口を出し、機械的ではなく、目的に沿ってどのように分解すると状況が見えやすくなるかを考えることが重要です。この時に使える手法が「MECE(Mutually Exclusive, Collectively Exhaustive)法」であり、漏れなくダブりなく分けることを意識する必要があります。 MECE法の具体的な手法を学ぶ MECE法には次の3つの方法があります: 1. 層別分解:全体を定義して分ける(例:単価別、年代別) 2. 変数分解:一つの数字に対する変数を分ける(例:売上=客数×単価) 3. プロセス分解:分析対象の事象に関する全体のプロセスを考えて分ける(例:来店→注文→食事を運ぶ→食べる→会計→退店) 分解スキルの課題と対策 私はこれまでMECEの概念は知っていましたが、特に分け方がうまくできないと感じていました。上記の①〜③の手法を知ることができたのが一番の収穫でした。また、「他には?本当に?」と問いかけることで、分解の妥当性を検証することも重要だと感じました。 解約要因とその分析法は? 解約要因の分析: - 層別:子どもの年齢別、親の年齢別、世帯年収別、利用回数別、子どもの人数別 - 変数:アプリ利用状況=利用頻度×利用ゲーム数×1ゲームあたりの利用時間 - プロセス:契約→初期設定→初回利用→2回目利用→解約までの利用状況→解約→再契約 変数分解スキルを向上させるには? 変数分解のスキルアップ: 私は比較的容易に層別やプロセス分解の案は出せましたが、変数分解が特に苦手だと感じました。そのため、業務内外を問わず、日常生活で目にする数字を構成する変数が何かを1日に最低1つは考えていきたいと思います。具体例はすぐに思いつかなかったので、他の受講生の投稿や知人とのコミュニケーションを通じて課題を見つけていきたいと思います。 クリティカルシンキングを強化する クリティカルシンキングの基本姿勢: - 分解の切り口を検討する際に3つの視点を変えてみる。 - 出した結果に対して「なぜ」「本当に」「他には」という問いかけを行う。

「比較 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right