データ・アナリティクス入門

数値の裏に潜む学びのヒント

データ比較の基本は? データ分析は比較という原則に基づいており、数値同士の比較を通してデータの実態や分布を探る作業です。まず、データの中心に位置する代表値を把握し、その上でデータがどのように散らばっているかを確認することが基本となります。代表値としては、単純平均のほか、加重平均、幾何平均、中央値が用いられ、散らばりを評価するには標準偏差の算出が有効です。 業務で分布を確認すべき? 普段の業務においては、データの分布を確認する試みが十分になされていないと感じます。分布を求めるためには、まずデータを分類するための項目が必要です。そのため、データ加工を前提として目的を明確にしながら項目を選定することが重要です。分析の目的と加工という手段を意識して検討することが、成功のポイントだと実感しました。 算出方法をどう活かす? 今回紹介された算出方法を効果的に活用するためには、標準偏差の算出、ヒストグラムの作成、加重平均や幾何平均を使いこなすスキルが求められます。今後は、これらの技法を実践的な練習問題などで訓練し、習得していきたいと考えています。

クリティカルシンキング入門

実践で磨くクリティカルシンキング

ライブ授業と実践テーマは? 今週はライブ授業で、バスケットチームのデータ分析と、大手ファストフードチェーンの経営改善を実践テーマとして取り上げました。これまで学んだイシューの特定、データの分析および見せ方のスキルを活用し、復習を行うことができました。最後には、クリティカルシンキングとは何か、今後どのように取り組んでいくかを皆で共有しました。 そもそもその考えは? エビデンスを創出する業務において、クリティカルシンキングは基礎中の基礎であり非常に重要だと感じています。日々の文献の抄読や、顧客との面会、会議での活動の中で、「そもそもその考えは?」、「何か視点が漏れていないか?」、「このイシューは?」といった問いかけを通じ、常に俯瞰的で多角的な視点を持つよう努めています。 事前準備はどうすべき? 顧客面会の前準備では、まず「イシュー」を明確に設定して取り組むことを心掛けています。仕事に没頭し始めた時こそ、もう一人の自分を呼び起こし、できたことは記録として残し共有する一方、できなかったことについては振り返りの時間を設けて見直しています。

クリティカルシンキング入門

データが語る組織の新しい一面

データ加工で新たな発見をするには? データを加工することで、その特徴を理解できるようになります。最初は特徴がないように見えるデータでも、分解して可視化することで新たな特徴を発見できます。分解する際には、MECEを意識して多くの観点からアプローチすることが重要です。これにより、データの特徴をより深く理解することが可能になります。 組織の稼働状況をどう可視化する? 私は組織の稼働状況や勤怠状況を可視化する業務をよく行っています。しかし、データの切り口を考える際には、目の前の情報だけに頼ってしまうことが多いです。今回の学習を通じて、切り口を言語化し、応用するための新しい視点を得ることができました。 データ分析に重要な視点は何? データを分解する際には、When、Who、Howを意識して、多くの切り口をまず検討することが重要だと感じました。組織メンバーの業務の偏りを分析する際、これまでは組織毎や案件毎といった切り口で見ることが多かったですが、今後は役割ごと、入社年次ごと、グレードごとなど様々な切り口も加えて分析を行ってみようと考えています。

データ・アナリティクス入門

目的が明日のヒントになる

問題点は何でしょう? 何が問題かを明確にし、結論のイメージを持ちながら取り組むことが大切だと感じました。何を解決したいのかを考えることで、目的に立ち返ることができるため、数字をどのようなグラフで表現するか悩む場面でも、考え方の整理が進みました。データ分析においては、仮説思考が基本であるとも実感しています。 プロジェクトの目的は? 業務改善プロジェクトに取り組む際には、まず目的の設定が不可欠です。進める中で何を解決したいのか、そして最終的な結論のイメージを持ちながら作業を進めたいと考えています。現状では、システムや運用の活用率といったデータが中心ですが、活用と非活用という単純な区分のみで目的に沿った分析が可能かどうか、再度検討する必要があるように思います。 誰にでも分かる目的は? 目的設定については、誰にでもすぐにイメージできるような分かりやすいものにすることが重要です。現在取り扱っているデータから新たな気づきが得られないか、また、ほかのデータを追加することで見えてくる可能性があるかどうかにも注目していきたいと思います。

データ・アナリティクス入門

全体像に迫る!データ活用の新視点

全体像を掴めた? 今週は、これまで学んできた内容の総括を行い、全体像を整理することができました。特に、さまざまなフレームワークを学ぶ中で、データ分析への応用という視点が十分に考慮されていなかったと感じ、その応用方法を学べたことは大きな成果となりました。 解決プロセスは? 問題解決のステップや、各ステップにおけるプロセスの分解など、これらのフレームワークがMECEの実践には欠かせない要素であることを実感しました。今後は、これらの点を念頭に置いて取り組んでいきたいと考えています。また、仮説設定については、あくまで切り口として捉え、仮説の実証に固執しない姿勢を大切にしていく所存です。 データ活用はどう? さらに、日常的に触れるデータを活用し、各フレームワークを自分の中に定着させるためには、意識的な実践の場が必要であると感じました。そのため、普段の業務はもとより、オープンデータを活用して実践できる環境づくりに取り組むつもりです。具体的には、新たな講座への受講や社内での勉強会の企画などを通じて、さらなるスキルの向上を目指します。

クリティカルシンキング入門

分析の新視点でスキルを磨く挑戦

データ分析への新たな視点は? 私は日々の業務でデータを分析する機会がありますが、今まで同じ手法で行ってきたことに気づかされ、反省しました。データ分析においては多様な視点で考えることが重要であり、仮説を立てつつデータを加工・分解し、結果が異なる場合には新たな仮説を構築して異なる視点から再チャレンジする。そうしたトライアンドエラーを繰り返し、データ分析のスキルを磨きたいと思います。 データ理解を深める挑戦 普段の業務で目にするデータも、ただ眺めて終わりにせず、自分で加工して理解や洞察を深めることに挑戦したいです。また、具体的なデータ分析業務に携わる機会を活かし、仮説立てとデータ加工のサイクルを繰り返し、分析スキルや仮説構築の感度を高めたいと考えています。 ニュースデータでのスキル向上 仕事だけでなく、ニュースや新聞で出会うデータにも自分なりに加工する挑戦をしてみたいと思います。ニュースに掲載されるデータの前提や、割合を示している場合の分母と分子の関係についても、MECEの視点で注意深く検討する癖をつけていきたいと考えています。

データ・アナリティクス入門

データ分析を変える前に目的確認の力

データ分析の目的すり合わせとは? 講義内のグループワークでは、上司と部下の間でデータ分析の目的をしっかりとすり合わせる重要性についての議論が特に印象的でした。コミュニケーションが一方通行になっていないか、それぞれの思い込みをそのままにしていないか、データ分析に入る前に行うべきことがあると再認識しました。 目的の共有で生まれた変化は? そこで、「データ分析前の目的のすり合わせ」を意識し、今週の業務に取り入れてみました。業務内容としてはデータの取り扱いが簡単なものであっても、その目的を明確に部下に説明すると、彼らの表情が明るくなり、納得感が増したように思います。 データの共有は次にどう活かす? 日々の業務は多種多様なデータの取り扱いの連続です。目的やデータの見方について、社内で共通の認識が確立している場合もあれば、単にデータをまとめて共有するだけで次のアクションにつながらない場合もあることに気づきました。今後は社内でグラウンドデザインの共有を進め、各種データの目的やKPIとしての活用方法について議論を深めていきたいと思います。

データ・アナリティクス入門

データ分析で業務効率化の新発見!

データ分析で新視点を得るには? データ分析とは、比較を行うことで新たな視点やアイデアを引き出すことが可能であると学びました。同じ基準や条件を用いることで効果的に分析ができ、新しい発見に繋がることが特に印象的です。 効率化への第一歩は? これまでの仕事では、何となくデータを用いながらプロジェクトの進捗を管理していましたが、新しい職場では積極的にデータの可視化を取り入れ、業務の効率化を図りたいと考えています。以前は過去のデータより直近のプロジェクトの状況にのみ焦点を当てていました。 なぜデータ可視化が重要? 日常業務の中で、業務上必要がない場面でもデータを可視化することは重要だと考えていましたが、既存のシステムやBIツールに頼りがちでした。しかし、自ら業務プロセスをデータ化することが、業務のパフォーマンス向上に繋がるのではないかと考えています。 ダッシュボード作成スキルをどう磨く? 現在は過去のプロジェクトマネジメントの経験を活かし、会社の既存のダッシュボードを一から作成するスキルを身につけるために勉強を続けています。

データ・アナリティクス入門

数字で読み解く現場改善の秘訣

データ分析はどう理解? データ分析の手法について学び、既存のメソッドを活用することでデータ内に潜む意味を解析できることを理解しました。ただし、MECEの設定基準やその手法についてはまだ不明な点があるため、今後は確認を重ね、分析力の向上に努めたいと考えています。 現状のITは十分? また、職場で業務改善を担当する中で、現在の環境では活用可能なITリソースが十分に利用されていないという認識に至りました。単に使い方や技術的な問題だけでなく、業務の種類、内容、工数、手順などが十分に把握されないままツールが導入されている可能性を感じたため、まずは自身の置かれている環境の理解を改めて確認する必要があると実感しました。 業務改善の手法は? 今後は、職場内の業務項目、分類、関連する法令、関わるステークホルダー、工数、作業手順をリストアップし、最適なツールの選定や作業方法の見直しにつなげていく予定です。具体的には、現在使用している掲示板の改善に向けて、上記の内容を全員に再認識してもらうための作業と、その手順書の作成を進める考えです。

データ・アナリティクス入門

4視点で読み解く問題解決のコツ

情報収集の課題は? 収集したデータは、そのままでは問題解決に活かすことが難しいと感じました。なぜなら、目の前にある情報に左右されやすく、都合の良い情報だけを集めて判断が偏ってしまうリスクがあるからです。 問題整理の手法は? また、【What】【Where】【Why】【How】というステップで問題解決を整理する考え方は、非常に効果的だと実感しました。これはデータ分析に限らず、さまざまな事象を体系的に整理する上で役立つ手法です。たとえば、製品企画や業務提案に取り組む際、どの切り口からアプローチするかの起点となるため、有用だと感じました。 提案の差はどう? 最近の新しい業務提案にあたっても、同様に【What】【Where】【Why】【How】で整理する必要があります。ただし、提案内容が【How】だけに偏ってしまう傾向があるため、MECEを意識して全体をバランスよく整理することが重要です。さらに、金額(HowMuch)や期間(HowLong)といった具体的な要素も含めて考えることで、より実践的な問題解決が可能になると感じました。

データ・アナリティクス入門

WHYを追う!仮説×データの挑戦

仮説検証で何が分かる? ライブ授業では、WHAT⇒WHERE⇒WHERE⇒HOWの順番に沿って、適切な仮説を基にデータ検証を行う重要性を再認識しました。以前学んだクリティカルシンキングにおける問題解決のステップと共通点が多く、両者の関係性がよく理解できました。仮説検証のプロセスにデータ分析を組み合わせることで、より良い課題解決や提案が可能になると感じています。 内部監査にどう活かす? この考え方を、私自身の内部監査業務にも取り入れ、問題の核心に迫る質の高い改善提案を実現したいと思います。特に、これまであまり重視してこなかったWHYの分析については、今後、的確に問題の真因を把握するために、重点的に実施していく予定です。 MECEで本質をつかむ? また、課題に対して決めつけず、全体をMECEの視点で捉えながら不要な部分と深堀が必要な部分を明確に区別したいと考えています。深堀が必要な箇所については、改めてWHAT⇒WHERE⇒WHERE⇒HOWのステップを踏み、考えを可視化して説明できるよう努めることが大事だと実感しました。

クリティカルシンキング入門

データ分析で見える!戦略立案の新視点

データ分解の重要性とは? データを分解することで、事象の原因について仮説を立てやすくなると理解しました。ただし、分解方法を誤ると要因が見えにくくなる場合があるため、複数のパターンで試行して最適な方法を見つける必要があります。また、分解には漏れなく重複なく全体を分解していくことが重要です。さらに、異なる切り口で分解することで、要因を特定しやすくなることも判明しました。 顧客分析で見つかるボトルネック 新規顧客と既存顧客に分けて、受注に至るまでの各プロセスにどのようなボトルネックがあるのか分析したいと考えています。同様に、業種や規模、地域といった異なる視点からも分析を行い、どこにアプローチをすれば最大の効果が得られるか仮説を立て、実践してみたいです。 効果的な営業戦略を立案するには? 営業戦略を立案する際には、まず業務プロセスを見直し、データを取得できるようにする必要があります。アプローチの回数や提案の回数、対面かWebかといった各種データを分析可能にするため、業務プロセスの改善から着手する必要があることが分かりました。

「業務 × データ分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right