データ・アナリティクス入門

ゼロから始める客観分析術

どの分析方法が有効? 問題を特定する際のアプローチについて、分類や分解の手法、考え方の基本を身につけることで、さまざまな課題に対してゼロから悩むことなく、正しい分析を進められると実感しました。学習の中ではプロセスの分解に重点を置いていましたが、他の方法についても幅広く覚えておきたいと考えています。 提案の見直しは必要? 実業務においては、顧客への提案で解決策ありきで進めてしまうケースがあり、都合の良い分析になってしまうことがあります。こうした提案は初めは良い印象を与えるかもしれませんが、本質的な課題解決にはつながらず、長期的には評価を下げるリスクがあるため、業務の進め方を見直す必要があると感じました。まずは、これまで学んだ分析のステップに基づき、客観的かつ正確な分析を実行した上で、最適な解決策を提案することが重要だと思います。 行動計画はどう決める? 具体的な行動としては、実業務で特定のサービスに依存せず、客観的で正確なデータ分析を徹底し、複数の選択肢を比較検討することが求められます。そして、適切な判断基準を設定して最適な解決策を提案することを意識します。加えて、提案後の振り返りを行い、実施した解決策の効果をデータで検証する仕組みを整えることで、継続的に提案の機会を創出できると考えています。

データ・アナリティクス入門

目的再確認で拓く未来

なぜ目的は大切? 分析とは、比較を通して物事を評価するプロセスです。まず、データ収集や具体的な分析を始める前に、はっきりとした目的を設定することが不可欠です。目的が定まらない分析は、結果として次の行動に結びつかず、単なる数字遊びになってしまうリスクがあります。 どのように対象を選ぶ? そのため、目的を明確にし、適切な対象を選ぶとともに、多角的な観点から正しく比較することが大切だと考えます。データ分析に入る前に一度立ち止まり、目的に立ち返る余裕を持つことが、成功への第一歩となります。 どのように傾向を見る? 具体的には、顧客の属性データやアンケート結果から傾向を読み取り、次月以降の施策に役立てています。また、自身の働き方に関しても、どの業務にどれほどの時間を費やしているかを他者と比較し、業務効率の向上を図っています。 どうやって振り返る? このため、毎週金曜日に10~15分間の業務棚卸しの時間を設け、週次および月次での振り返りを実施しています。さらに、1on1などの機会を通じて、業務時間の使い方について他者から意見を聴取し、比較することで、より実践的な改善策を模索しています。一方で、対顧客の分析に関しては、常に目的を再確認し、施策ありきの分析にならないよう注意を払っています。

データ・アナリティクス入門

仮説思考で業務が変わる瞬間

仮説の幅は広い? 仮説を考える際は、正しい答えを一つだけ見つけることが目的ではなく、論点に対する仮の答えとしてフレームワークを活用し、幅広い可能性を検討することが大切だと感じました。決め打ちに陥らず、常に複数の仮説を立てる姿勢が重要です。 仮説の意義は? また、仮説を考えることには、検証マインドの向上による説得力の増強、問題意識の向上、対応スピードのアップ、そして行動の精度向上という4つの意義があると学びました。これらの点は、データ分析にとどまらず、日常の業務においても活かせる有用な考え方だと思います。 難しさはどう? 仮説思考というと難しそうに感じるかもしれませんが、普段の業務で些細な疑問を感じたときに自分なりの原因を考え始めているのであれば、実はすでに仮説思考を実践しているのだと実感しました。今回学んだ問題解決のプロセスを参考に、日々の業務に仮説思考を取り入れることができそうです。 小さな課題は? まずは、短時間で取り組める小さな課題に対して、意識的にフレームワークを活用し仮説の幅を広げることから始めたいと思います。その上で、分析時の適切なグラフ選定や結果の分かりやすいビジュアル化といった、今まで苦手としていた分野の改善にも取り組んでいこうと考えています。

データ・アナリティクス入門

直感だけじゃ辿り着けない未来

直感は信頼できる? 普段の仕事やデータを扱う際、経験や直感に頼った仮説が基本であったことを改めて実感しました。データ分析そのものではなく、むしろデータ収集の段階で不足している点が原因だったと考えています。この経験が、部門費などの予算策定時における変化の捉え方を再見直すきっかけとなりました。 予算根拠は正確か? 部門費の策定根拠や、今後の設備投資に関する理由付けについては、未来を見据えた考察が十分でなかったと感じています。何か異変があった場合の修理費用が予算に計上されず、過去の事例や頻度を確認することで、適正な管理につながる一手段としたいと思います。 委託実態はどうだ? 請負会社に業務を委託している現状では、作業の安定性はもちろん、雇用期間が短期に終わる点にも課題を感じています。労働内容に加え、職場環境も影響していると考え、既に委託から10年が経過している案件も多いことから、改めて状況把握から始めたいと思います。 記録整備は必要? 具体的には、請負会社で働く方々の実務経験年数や年齢層などの基本情報の収集を行い、当社を離れる理由なども可能な限り情報として集める予定です。また、設備投資に関しては、過去の作業記録のデータベース化が未実施であるため、そこから着手する方針です。

クリティカルシンキング入門

軸を変える!データの新発見

最初のLIVE講座の印象は? クリティカルシンキングの総まとめの週では、最初のLIVE講座で「自分の思考の癖を知る」というテーマが特に印象に残りました。その後のLIVE講座では、week1~5で学んだ知識を活かしながら、2つの問題に取り組み、その中で数字の並びを見ると細部に過度に意識が向いてしまう自分の癖に気づかされました。そこで、まず問題全体を把握し、数値を見える化する、軸を変えて視点を変えるといった手法を段階的に取り入れることの大切さを実感させられました。 数字分析はどう進む? さらに、数字の羅列や傾向を分析する際、現実の業務の中でも工数の見直しやシステムの性能分析などが必要になる状況を思い起こしました。今回学んだデータ分析のツールを活用すれば、初めに考えすぎず、さまざまな角度からデータの整理と視覚化を行い、その上で仮説を立て補足説明を探すという実践的なアプローチが可能だと感じました。 どのデータ視覚化? 今後は、単に収集したデータに基づいて行動するのではなく、まずはデータを多角的に分類し、視覚化する作業を徹底して行います。そして、その中から得られる示唆をたくさん書き出し、グループ化や抽象化を通じて整理し、自分の視点をさらに深める検討を進めていきたいと思います。

データ・アナリティクス入門

データ分析の基本を理解し深堀り

分析の基本を理解しよう 分析は比較であるという基本を理解することが重要です。目的や仮説をもとに分析に取りかかること、そして問題解決のステップ(What-Where-Why-How)を意識することが求められます。仮説を立てる段階から、何と比較するかを考えながらデータを集め、それを加工・集計し、ビジュアル化することで発見につなげるという手順が大切なのです。 仮説立案の重要性 現在の業務では、多種多様なデータが提示されることが多く、闇雲に分析してしまうことがあります。ここで重要なのは、仮説をしっかり立てて分析に取り組む姿勢を忘れないことです。 データ収集から始めよう 今後の業務では、どのデータを集めるかという段階からスタートします。その際に、学んだことを振り返りながら全体の設計に取り組みたいと考えています。 フレームワークの活用法 今回の講座は自分にとって納得感のあるものでしたが、人に説明や指導するにはまだ至っていません。復習しつつ、意識して普段の業務に当たることで、講座で学んだ内容を自分のものにしていきたいです。特に、フレームワークについては知識としては以前から持っていましたが、きちんと使用したことがなかったため、今後は積極的に活用していきたいと思います。

データ・アナリティクス入門

データ分析で見えてくる未来へのヒント

データ分析の基礎を理解するには? データ分析を始めるにあたり、まずはデータの形式を理解し、その違いを把握することが重要だと感じました。分析に必要なデータを集め、形式に合わせた加工を施し、さらに可視化することで示唆を得る流れを認識しました。特に、データの性質をしっかり理解しないままでは、可視化しても意味がないことを学びました。 どう業務課題を探索する? 例えば、各店舗での様々な商品の契約状況から、それぞれの商品の契約者に共通する特徴を可視化したり、取引履歴と商品の契約状況の関連性を探るといった作業は、まずデータの性質を把握することから始まります。データを比較し、その特徴を掴むことで、業務課題に関連するデータが何であるかを見極めることができます。 他社事例をどう活かす? また、他社のデータ活用事例を知ることで、自社の業務に置き換えて考え、業務上の課題を発見する手がかりとすることができました。社内においても、各種システムで収集・蓄積されているデータの内容を把握し、それを整理して業務課題を解決するための手法を模索することが大切です。こうしたプロセスを経て、データの性質を十分に理解し、適切に可視化し比較することで、より良い業務改善に繋げることができると感じました。

データ・アナリティクス入門

内省の力が未来を創る

内省はどう進める? 内省的観察については、仮説検証型、行為一体型、外部フィードバック型の3つのアプローチがあることを学びました。実務では仮説検証型に偏りがちですが、変化の激しい現代においては、状況の変化をとらえながら行動と連動して内省を進める行為一体型が重要だと感じました。 学習動機をどう捉える? また、学習動機に関しては、ある理論モデルに沿って内発的な動機と外発的な動機を考えることの意義を学びました。具体的には、内側に起因する充実思考、訓練思考、実用思考と、外側に起因する関係思考、自尊思考、報酬思考という区分に基づいており、チームメンバーそれぞれの内発的動機づけをより一層支援する必要性を感じました。特に、評価目標に含まれていない業務に対しても、その必要性を相手の立場に立って理解してもらえるよう説明することが大切だと思います。 外発動機の見える化は? さらに、外発的動機については、データ分析の結果などを可視化した資料をより多く共有することで、目的に即した行動や目標の具体的なブレイクダウンを個々にサポートする重要性を実感しました。新しい指標を取り入れるなど、自身の行動変容やマインドセットの転換にも積極的に取り組んでいく必要があると感じました。

クリティカルシンキング入門

データ分析の新しい視点発見!

データ分析で新発見を得るには? データを分析する際には、さまざまな切り口から考え、実際に手を動かしてデータを加工することで、新たな発見が多くある。分解の粒度が大きい状態で導き出した結果を安易に結論としてしまうと、誤った判断を下す可能性がある。そのため、分解を行う前に全体を把握し、定義することが重要だ。 仮説をどう裏付ける? これまでデータを分解して分析することは多々あったが、全体を把握し、定義したうえでMECE(Mutually Exclusive, Collectively Exhaustive)な切り口で分解できていたかというと、必ずしもそうではなかった。また、自分が立てた仮説を裏付けることを目的として、恣意的に切り口を設定していたこともあった。まずは、オフィス内のスタッフごとの工数負担について、全体を把握したうえで分析したいと思う。 先入観を排除する方法は? 普段、自分が抱いているイメージという先入観をまず取り除き、工数実績などの数値から導かれた結果にフォーカスする。そのうえで、全体像を把握し、MECEを意識して切り口を決定する。具体的には、全員の残業時間も含めた総労働時間をもとに、業務ごとの工数を比率として算出してみたい。

クリティカルシンキング入門

コツコツ学びが仕事を変える

学習時間はなぜ難しい? 今回の勉強は、以前のデータ分析の際とは異なり、毎朝コツコツと学ぶ時間を確保することが難しく、順調に進めることができませんでした。一方、実務で自然に意識していた内容が学びの一部に反映され、知識の整理に役立ちました。その結果、全体としては勉強になったと感じています。 グループ参加はどう感じる? また、グループワークへの参加については、後から参加したほうがよかったと反省しています。今後は、初めから積極的に関わることで、より多くの視点を取り入れたいと考えています。 問題の解決策は何だろう? さらに、問題解決に没頭してしまいがちな反省もあります。なぜその問題を解決する必要があるのか、根本的な問いを持つことに意識を向け、アプローチを見直すことが必要だと感じました。加えて、人に伝えることにまだ苦手意識があるため、伝え方の手法をさらに学び、業務に生かす努力を続けていきたいと思います。 知識はどう実践する? 前回受講したデータ分析の勉強と今回の学びを組み合わせ、より深い知識として業務に実践していくつもりです。今後も、言いたいことを明確にする思考法や伝え方の訓練を続け、日々の業務に活かしていきたいと考えています。

クリティカルシンキング入門

MECE実践!仮説検証で切り拓く発見

データ分析の意義は? データを分析する際には、元のデータをさらに加工できないかを常に考えながら進めることが大切だと実感しました。また、分析が進むにつれて様々な仮説が立てられるため、その仮説をどのように検証するかを考えるプロセスも重要だと感じています。 検証で何を得た? 仮説と検証を繰り返すことで、新たなインサイトを発見できることが分かりました。 MECEの活かし方は? また、データを分けるときには、MECEの考え方を取り入れることで、効率的なデータの分解と分析が可能になると学びました。今日からは、「モレなくダブりなく」の精神を意識したデータの分け方を実践していこうと思います。 報告で工夫する? 社内の業務データをまとめて報告する機会があった際には、これまでのフォーマットに従った報告だけでなく、自分から先んじてデータを加工し、新たな気づきを得る試みを行いたいと考えています。 全体像の捉え方は? 今後は、業務データを扱う際に、全体像を意識しながらMECEの視点を取り入れて課題に取り組むとともに、単一の切り口にとどまらず、層別の変数やプロセスごとに異なる切り口で全体を見渡す意識を持って取り組むようにしていきます。

クリティカルシンキング入門

デジタルツール活用で効率アップした話

オンライン学習のメリットは? 私はオンライン学習サービス「ナノ単科」を受講して、非常に有意義な時間を過ごすことができました。この講座では、最新のビジネス知識やスキルが学べるだけでなく、実際に業務に応用できる実践的な内容が豊富に含まれていました。具体的には、**デジタルツールの活用法**や**データ分析の基本原則**など、仕事に直結する知識が多く、業務効率の向上に役立っています。 ストレスフリーな学び方とは? 講義はオンライン形式なので、自分の都合に合わせて学習を進められる点が良かったです。また、テキストの内容がわかりやすく、動画講義も見やすい構成でストレスなく学べました。 業務への応用で得た成果は? さらに、ナノ単科を通じて得た知識を業務に活かすことで、自分自身のスキルアップを感じることができました。講義内容を実際の業務課題に応用する際の具体的なアプローチ方法も紹介されており、実務との結びつきが非常に強い点も評価できます。 このように、ナノ単科は自分のペースで学びながら、実務に直結するスキルを身につけられる優れたオンライン学習サービスだと思います。今後も継続的に利用して、さらなるスキルアップを目指したいと考えています。

「業務 × データ分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right