戦略思考入門

競争から抜け出す差別化戦略のヒント

誰に差別化すべき? 差別化について考える際、「誰に対して差別化を行うのか」を明確にすることが重要です。多くの人が、「差別化 = 競合他社との差別化」と考えがちですが、ビジネスにおける戦略は単なる競合への対抗ではなく、顧客に自社を選んでもらうためのものである必要があります。そのため、自社のターゲット層をしっかりと特定し、その層に響く差別化の施策を考える必要があります。 他業界も見るべき? 差別化の施策を考える際には、他業界にも目を向けることが大切です。つい自社と競合他社だけにフォーカスしがちですが、異業種の企業も顧客の選択肢となることがあります。そのため、業界を超えた競合を把握し、差別化に取り組むことが求められます。 施策は実行可能? また、施策の実現可能性と模倣困難性も重視すべきです。どれだけ優れたアイディアでも、企業のリソースやスキルで実現できなければ意味がありません。また、簡単に真似されてしまうような施策では効果が薄いです。そのため、自社で実行可能であり、かつ他社が容易に真似できない施策を考え続けることが重要です。 戦略の見直しは? 我々の会社は、かつて業界内で優位性を保っていましたが、競合製品の普及や低価格化の流れによってその優位性が失われつつあります。VRIO分析を行った結果、競争劣位か競争均衡のレベルに留まっていることが分かり、新たな戦略を考える必要があります。社内では、製品開発のアイディアを全社員から募るシステムを活用して、競合他社の製品情報や顧客のニーズを把握し、差別化のアイディアを積極的に提案していきたいと考えています。 競合はどう捉える? さらに、私が携わるオウンドメディアの運営でも、多様な企業が同じテーマでメディアを展開しています。そのため、競合となり得るメディアをしっかりリサーチし、差別化を図る必要があります。特に、顧客の疑問を解決する専門知識や、実際の製品使用による課題解決の事例紹介を強みとして生かしていきたいです。 常に考え続ける? 差別化のアイディアを即座に出すのは難しいと感じますが、考え続け、アウトプットを続けることでスキルは育つと信じています。小さなアイディアでも思いついたら積極的に発言し、フィードバックを得ることでより良い施策にしていきたいと考えています。他人と意見を交わしながら考えることを習慣化し、個人の成長と共に会社の成長に貢献していきます。

データ・アナリティクス入門

グラフと平均値で掴む分析術のコツ

グラフは何を示す? グラフの活用法とその分析時の手法について考えます。まず、円グラフは各要素の割合を確認したい場合に使用します。一方、ヒストグラムは全体のばらつきを視覚的に把握したい時に便利です。グラフを活用する際は、事前に仮説を立て、その仮説に基づいて予測データと実際のデータを比較し、深堀することが重要です。 平均値はどう使う? 分析手法としては、様々な平均値があります。単純平均はただ平均値を求める方法です。加重平均は重みを考慮して算出され、例えば東証株価指数がこの方法を用いています。幾何平均は成長率や平均何倍になるかを知りたい時に使用されます。外れ値の影響を避けたい場合は中央値を用いるとよいでしょう。また、標準偏差を利用することで、データのばらつきを把握できます。標準偏差が小さいほどデータは均一であることを示します。これに基づき、2SDルールでは95%のデータが大よその範囲内に収まるとし、5%のデータは外れ値とされます。 リスクはどう把握? 施設のポテンシャルや価格の分布を分析する際には、ヒストグラムや散布図を使うことで、戦略に対するリスクを特定できます。例えば、ポテンシャルの高い施設で高コストの外れ値がある場合、戦略的値下げの必要性を検討する余地があります。また、小さい施設で安価なコストの外れ値はベンチマークとして他施設に引き合いに出されるリスクとなる可能性があります。 医療データの精度は? 医療機器のデータ精度を分析する際、標準偏差を利用して精度の精確性を確認することができます。業界の標準として、変動係数CVが2%以下であれば精度の担保がされているとされています。変動係数は標準偏差を平均値で割ることで算出されますので、まず標準偏差を求める必要があります。特に機器の精度が外れ値を持たず、許容範囲内に収まることが求められるため、標準偏差の知識は重要です。 適正価格はどう算出? 価格交渉の際、統一グループやGPO施設カテゴリ内の平均価格やベンチマークの引き合いがあります。この際、どの「平均」が使用されているかを確認し、データを鵜呑みにせず、グラフや散布図、加重平均や中央値を用いて適正価格を示すことが重要です。 仮説はどこから? 最後に、分析に取り掛かる前に仮説を立てることが大切です。仮説に正解はありませんが、経験に基づいた想像力を活かし、いくつも仮説を洗い出すことが有益です。

戦略思考入門

スキル共有で広がる効率化の未来

経済性って何だろ? 「規模の経済性」と「範囲の経済性」について学びました。 規模経済はどう働く? まず、規模の経済性とは、大量生産によりコストを削減することです。具体的には、1製品あたりの固定費が下がり生産効率が向上し、原材料の大量仕入れで購買力が強化されコスト削減が交渉しやすくなります。このメリットとしては、利益率の向上や価格競争での優位性向上が挙げられますが、一方で、生産量の変動が大きい製品やサービスではコストが増える恐れがあります。 範囲経済はどう実現? 次に、範囲の経済性は、複数の製品やサービスを生産することでコスト削減を図るものです。製造体制や原材料を共有することで生産性が向上し、スキルやノウハウなど無形資産をも共有できます。これにより、ブランドの知名度を高めたり、副産物から新たな需要を創造することが可能ですが、関連性の低い製品やサービスの場合は訴求効果が乏しく、技術や知識が活用できずに逆にコストが増すリスクもあります。 部署での活用はどう? 私の部署は直接コスト削減に取り組むわけではないため、すぐに業務に適用することは難しいと感じました。特に、規模の経済性については自社の製品特性上、適用が難しいと思います。しかし、範囲の経済性については、社内で内製化しているシステムを他の業務でも使えるようにすることでリソースを削減できると考えます。 学びをどう生かす? 今回学んだ中で最も業務に役立てられるのは、フレームワークや原理原則の理解を深めることです。名前を聞いたことがある概念でも、実際に学ぶことで理解が曖昧であったことを痛感しました。また、デメリットについて解像度を上げて考える必要性も感じました。これから業務にこれらの思考を用いる際には、まず正確な知識を得て、曖昧な状態で取り入れないようにしたいです。 生成AIはどう活用? 現在、各部署で生成AIを用いた業務効率化が進められています。自部署でのプロンプト生成が独自に行われていますが、その使用方法やプロンプトは他の部署の業務にも活用できる可能性を感じています。そのため、AIスキルを共有する場を設け、業務効率化を広く行いたいと考えます。直接的には売上や利益にはつながらないかもしれませんが、作業時間が削減され各部署で対応できる業務が増えることで、「範囲の経済性」にかなっているのではないかと思います。

クリティカルシンキング入門

理論を実践に転換する新たな視点

理論と実践の進め方は? これまでの学習を総括すると、理論的な理解から実践へのステップをどのように進めるかを考える重要な期間でした。Week0-6を通じて、思考のステップや方法について、理論的には知識を深めましたが、実際の実践に移すためには、今後の自分自身の行動を見直す必要があると感じています。 学び活用のポイントは? 以下は、これまでの学びを最大限に活用するためのポイントです。 どんな姿勢が必要? まず、3つの姿勢です。「目的を常に意識する」「自他の思考のクセを前提に考える」「問いを持ち続ける」の3つの姿勢を常に持ち続けることが重要です。これにより、思考力が向上し、継続的なトレーニングが肝になります。 相手をどう理解? 次に、相手の視点に立ち、他者を理解することが欠かせません。相手目線での「考える」「書く」「話す」「見せる」といったスキルを磨くことで、相手の思考のクセを理解するようにし、それが伝達の工夫につながり、業務を効果的に進めるために役立つと学びました。 長期策は何が必要? 今後の長期的な活用として、改善策の検討が挙げられます。日常の業務では、人事領域で改善策を考える場面が多くあります。そこで、学んだ思考のプロセスを用いて、具体的な形にすることが重要です。相手目線で伝えることで、他部署からの早期承認を得ることもできます。 来期プランはどう? 直近の業務における活用ポイントとしては、来期プランの策定があります。採用や研修などに関する来期プランの検討には、現状の分析をもとにイシューを特定し、具体的な策を考えていくことが求められます。注意点としては、手段ありきで進めないことです。 質向上の秘訣は? さらに、日々のメールや資料作成、会議のファシリテーションにおいても、質を高めることで業務遂行能力を向上させることを目指しています。 プラン策定の進め方は? 現在進行中の来期プラン策定の過程では、講座で得た学びを実践する良い機会です。この過程を通して、自身の学習の不足点も見えてくると思います。そのため、実践を重ねるとともに、さらなる学びを進めていきたいと思います。 今期施策の具体策は? 具体的には、今期のデータを分析し、各会議の目的を明確化して参加型の会議を実現することや、新たな施策をデータから抽出すること、相手目線を考慮した資料作成を行う予定です。

クリティカルシンキング入門

分解で拓く学びのヒント

分解方法はどう選ぶ? 分解して考える方法について学ぶ中で、層別分解(部分ごとや性年代別など)、変数分解(売上=単価×数量など)、プロセスによる分解というさまざまな切り口があることを再認識しました。実際に経験を重ねる中、分解することで新しい事実が見えてくると感じる一方、切り口や分け方によって事実の見え方が変わるため、十分な確認が必要であると実感しました。特に、常に「MECE」の概念を意識して切り口を選び、数字の漏れや重複がないかを確認することが大切だと思います。 ロジックは何が新鮮? ロジックツリーに関する学習では、MECEの切り口を組み合わせることで、全体像から個別の要素に至るまで論理的に整理できる点が非常に新鮮でした。動画での解説を通して、この考え方は便利だと感じた一方、実際に自分で応用しながら考えると難しさもありました。しかし、学習を進めるうちに、重要なポイントや具体例を通じて、影響を与えうる要素に対して仮説を立て、インパクトの大きい要因を組み合わせて考察する方法を習得できました。 実績分析のコツは? 得意先となる食品スーパーなどの実績分析においては、全体実績から店舗別やカテゴリー別に分解し、どの要因が結果に影響を及ぼしているのかを的確に抽出するためにロジックツリーの活用が効果的だと感じました。 仕入分析は何重視? また、仕入先商品の分析においては、商品の供給が最終的に販売店や消費者に届き、どのように売れているのかを詳細に検証する際にも、分解する考え方が役立つと考えます。表面的な数字だけでなく、どのような顧客層にどの時間帯や曜日に支持されているのかを把握することで、提案方法や販売店へのアプローチがより具体的になると感じました。 自社提案の秘訣は? 自社提案および実績の分析では、取り扱う商品が複数に及ぶため、単品での販売ではなく「商品群」としての提案が求められることから、売上という表面的な数字だけでなく、分解方法を駆使して細かい部分まで検証・提案に活かしていく必要があると認識しました。 数字確認はどうする? 日常的に数字の確認を行うため、基本の考え方を忘れないようにする目的で、手帳と勉強ノートに「分解方法」「MECE」「ロジックツリー」の内容や重要なポイントをメモしています。これにより、目に触れる機会を増やし、反射的に活用できるように心がけています。

クリティカルシンキング入門

ロジックツリーでシステム開発の要件定義に挑む

思考の偏りを防ぐには? 考えが偏りやすいことと、その防ぐ手段があるという2点が大きな学びでした。 防ぐ手段として、まずロジックツリーについて述べます。以前からロジックツリーという言葉は知っていましたが、「いかにMECE(Mutually Exclusive, Collectively Exhaustive)に分けるか」が大切だと考えていました。しかし、実際にはMECEはあくまで付随事項であり、自分の思考を見える化するのが一番の目的だと感じました。 切り口を考える重要性 次に、「切り口を考える」についてです。目的に応じた切り口を考え、それに沿って思考を進めることの重要性を理解しました。この方法はロジックツリーの上位に位置する考え方で、常に意識する必要があると理解しました。「切り口を考える」は知的体力が必要となる内容だと思うので、これをどのように習慣化し、忌避感をなくすかがポイントだと考えます。 設計前の手法の重要性とは? 証券会社のシステム開発を担当していますが、特に具体的な設計・開発に入る前の「要件定義、プロジェクト計画時」にこの手法を利用したいと考えています。具体的には、以下の点について検討・実行に活用したいです。 - 具体的な要件を引き出す前に、開発対象の業務で一番重要なものは何か - プロジェクト計画を行う上で、一番重要視するファクター(お金なのか、時間なのか、等) - 要件を引き出すにあたり、どのようなコミュニケーション方法や準備が必要か - ステークホルダーの中でどのようなコンクリフトが発生し、それをいかに解決するか 明確化をどう習慣化する? 現在は過去の経験に頼って進めていますが、WEEK1の講義を受け、「目的の明確化」「考えの偏り」「その防止策」の3点を学びました。今後はこれらの点を意識しながら、具体的な作業に着手する前に確認し、学ぶ内容を活用していきたいと思います。 まずは「目的の明確化」を習慣化します。そこから考えるべき論点を洗い出すことが必要です。これまでは思いついたものを無批判に受け入れ、最終成果物の作成まで進めていましたが、今後は立ち止まり、他に論点がないか、どのような視点・視野で論点を洗い出したかを確認し、その後の作業内容を決定していきます。将来的には、上記の作業の中でロジックツリーを活用し、精度を上げられるようにしたいです。

データ・アナリティクス入門

問題解決の思考法でデータ分析を深化

問題検討の枠組みとは? 何、どこ、なぜ、どうの枠組みで問題を検討することは、出発点を探しやすくする重要なプロセスです。フリー記述の演習では、当初は部分的な問いしか思いつかなかったものの、この枠組みに沿って順を追って考えることで、問題を網羅的に洗い出しやすくなりました。これは、思考の癖を理解し、問題を整理するための効果的な手法です。 データ分析の新たな切り口は? 実際のデータ分析においては、データを見る切り口のバリエーションを増やすことが大切です。複数の種別や分類を挙げる演習では、初めに思いつくのは定性データ寄りでしたが、自分の事業や組織で扱うデータは感覚的に種別を想起しやすい反面、感覚に頼ると重要な切り口を見逃す可能性があります。これを避けるために、MECE(Mutually Exclusive, Collectively Exhaustive)な分け方を模索し、多様な切り口に触れることが重要だと感じました。 退職分析で考慮すべき点は? 私の業務では、月次で退職分析のデータを集計しており、分析の切り口をいくつか決めてデータを蓄積しています。退職関連の指標は、年度を通して初めて結果の出るものが多く、年間を通した考察を3月末までのデータで行っています。その際、現行以外の切り口でもデータを分析する必要があるのではないか、と常に考えています。 残業報告の改善点は? また、全社の残業報告を担当しており、毎月、残業代と残業時間の集計および考察を行っています。比較の切り口として、前月との比較、昨年同月との比較、部署別の基準を超えたスタッフ数を用いています。昨年比で残業代が減少したとしても、スタッフ数にも変動があり、一人当たりの残業時間など、データの見方を工夫する必要があります。年度末の報告には、これらのポイントも含めていく予定です。 分析のさらなる深化は可能? 実務の中で、他にも分析を深めることができるデータがないか探してみることが必要です。特に、バックオフィス部門の費用の予実分析を担当していますが、変数が少なく、問題そのものの特定だけにとどまりがちです。これにより定性的な要因分析に発展してしまうのですが、分析の切り口を工夫すれば変わるのかもしれません。まだその感覚が十分に掴めていないため、グループワークなどで相談しつつ、さらなる改善を図りたいと思います。

戦略思考入門

フレームワークで見つけた成功への鍵

フレームワーク活用の重要性とは? 今週は、ビジネス課題を検討する際に有用なフレームワークについて学びました。具体的には、顧客、競合、自社の各要因を考慮する「3C」、さらに政策、経済、社会、技術の要因を分析する「PEST」、これらを組み合わせた「SWOT」の有用性と注意点についてです。 体系的な分析の必要性を感じた瞬間は? 特に、3Cフレームワークでは「顧客⇒競合⇒自社(強み)」の順序で考えることが重要であると新たに理解しました。これまでは順序を意識せずに進めていたため、体系的な分析の重要性を実感しました。 フレームワークで解決策を見つけるには? 実際の演習を通じて、フレームワークを使わずに個人の経験に頼ると、課題や施策が偏るリスクがあることも学びました。日常の仕事においても、要因を整理して議論する人とは話がスムーズに進むのに対し、要因が散漫な人との議論は難しいと感じていました。フレームワークを活用することで、議論をスムーズに進めることができると感じています。 ビジネス課題を考察する際のポイントは? ビジネス課題を考察する際に気を付けるべき点として、以下の3つを学びました。いずれも複雑な課題ですが、早速実践に移したいと考えています。 SWOT分析がチームに与える効果は? コールセンターの満足度サーベイ結果に関して、メンバーに課題と対策を考えてもらう予定です。そのために、疾患領域ごとにSWOT分析を使用して検討・発表してもらうアイデアを思いつきました。SWOT分析によって、様々なメンバーが共通の要因で検討しやすくなると考えています。さらに、結果を全体的に検討する際も、統一された視点で議論できるため、有用であると期待しています。 今後の行動計画とは? 今後の行動計画として、以下の2点を立てました。 1. SWOT分析のフレームワークを準備し、メンバーとの課題や対策の検討方針を明確に説明する。明確な指示と方向性を提供することで、効果的な議論を促進します。 2. 私自身もコールセンターの満足度サーベイ結果について、SWOT分析や3C、PESTを用いて課題や対策を検討し、分析結果を具体的にまとめて共有します。この分析は組織戦略を考えるうえで非常に重要ですので、私個人の結果も整理し、組織全体の理解を深めるために貢献したいと考えています。

戦略思考入門

優先順位で達成するキャリア成功の秘訣

優先順位の付け方とは? 日々の業務において、優先順位をつけて取り組むことは重要です。自分が積極的に学ぶことで将来、自分や自社に還元される効果が高いものは、時間がかかっても取り組む価値があります。一方で、効果が低く必要性も低いと感じられるものについては、上司に相談することも一つの方法です。 新規事業の利益予測はどうする? 新規事業案件に関しては、立ち上げる際にその案件がもたらし得る利益や必要な資源を最高、標準、最低のケースで予測することが重要です。実際に市場に出して結果を見たうえで、課題が出てきた場合は、これらの情報に基づき取捨選択を行いましょう。 将来の業務改善方法は? 将来の業務については、各事業所ごとに業績やROIを確認し、製造・販売戦略を改善する必要があります。人的資本の投資優先順位には特に意識を払い、限られたリソースを最大限に活用する工夫が求められます。 キャリア形成のための計画は? キャリア形成の観点からは、3年後や5年後にどのような姿になっていたいかを基に、現在の業務がそのルートに合っているかを判断することが大切です。人事との面談を通じて、必要なスキルや経験を明確化し、具体的な行動計画を立てることが求められます。 効率的な日々の業務管理法は? 日々の業務では、業務をリスト化し、自分や自社への効果を基に優先順位を決めることで効率的に取り組むことができます。例えば、提出期限のある資料や議事録の作成、出張準備、自己研鑽など、それぞれの重要度や緊急度に基づき時間を割り当てると良いでしょう。 拠点改善のための戦略は? 拠点ごとの売上高や製品割合、各製品の利益率に基づき、拠点への注力の仕方や販売戦略を決定することも重要です。中期経営計画に基づき、拠点ごとの改善を進めることで、実現に向けて具体的なステップを踏むことができます。 キャリア目標の具体化はどう行う? キャリアを見据えた行動として、3年後には海外拠点の管理、5年後には駐在という目標を持ち、その実現のために必要なスキルや経験をリスト化し、具体的な行動計画を立てましょう。例えば、財務経験が必要であれば人事に相談し、経営企画業務にもっと時間をかけるなど、現在の業務を見直すことが重要です。常に自分の行動がどのような意味を持つのかを意識しながら、積極的に取り組みましょう。

デザイン思考入門

発想転換で掴む次世代解決策

どうして視点変更? ライブ講座のプロトタイプ発表では、視点を変えることの大切さと、課題解決において意外な効果があることを学びました。特に登山用バックパックをテーマとして、課題の捉え方を変えると解決策のアプローチも異なり、全く新しい応用例につながることが印象的でした。また、参加者全員が否定せずに各自のアイディアを前向きに受け止め、議論が活発に進んだ点が良かったと感じます。初期段階では改善の余地があるアイディアも多いですが、そうした点に踏み込んで議論する雰囲気作りが重要だと実感しました。 効果はどこから来る? 今回の体験は、単に商品開発に留まらず、他の業務にも応用可能な思考の枠を広げるワークショップとして十分な効果があると感じました。自分の思考の癖に気づく機会にもなり、技術的な面は後回しにしてまずは豊かな発想を引き出すステップが新たなアイディア創出に必要であると学びました。 なぜ議論は難しい? また、アイディアを出す際にはスキャンパー法を試してみたいと思います。今回のシェアや議論はスムーズに進みましたが、実際の職場では以下のような理由からディスカッションが難しい場合もあると感じました。 ・ポジティブな議論に慣れていないため、否定的な雰囲気になりがち ・結論を急ぐ傾向があり、十分な議論が行われない ・現状維持を好むため、新たなアイディアが無視される ・いかにアイディアを出しても、従来通りの結論に戻ってしまうと感じる ・突飛なアイディアを受け入れる土壌が整っていない ・質問を避ける傾向にある こうした状況に対しては、1~3枚程度のスライドにアイディアをビジュアル化し持ち寄ることで、言葉だけでは伝わりにくい発想を明確にし、議論を促進できると感じました。実際、業務においてプロトタイピングの機会は少ないものの、AIやクラウドサービスを利用すれば自分の考えを手軽にビジュアライズできるため、非常に役立つと実感しました。 どう未来を描く? 今後は、対象顧客の課題をしっかり理解し、その中から解決すべき点を明確にした上で、アイディアの出し方やビジュアル化、フィードバックの仕組みを業務に取り入れるステップを意識していきたいと思います。一旦アイディアを数多く出し、形にして共有することで、より実践的な問題解決につなげていく方針です。

データ・アナリティクス入門

データ分析で解決策を見つける旅

問題解決とデータ分析の関連性とは? 今週の学習を通じて、問題解決のプロセスとデータ分析の関連性について学ぶことができました。特に印象に残ったポイントは、問題解決のステップを「What(現状把握)」、「Where(問題特定)」、「Why(原因究明)」、「How(対策検討)」という形で整理するアプローチです。このステップを行き来しながら問題を深掘りしていく方法は、データ分析で何から取り組んで良いかわからない時に役立つ道筋を示してくれるため、非常に効果的だと感じました。 STARフレームワークの有効性は? 現状把握においては、問題を「あるべき姿」と「現状」のギャップと捉えることが重要です。このギャップを、STAR(Situation:状況、Target:あるべき姿、Action:行動、Result:結果)フレームワークを活用することで、より具体的に問題解決のプロセスをイメージしやすくなります。また、問題を因数分解することで、要素を細分化し問題のある箇所を特定でき、優先的に対応すべきところが明確になります。逆に、不要な範囲を明確にすることで、効率的に問題解決に繋がることも新たな発見でした。 ロジックツリーとMECEの効果は? 問題の因数分解にはロジックツリーが効果的で、層別分解や変数分解(掛け算)の2種類を問題に応じて使い分けることで、より効果的に分析が行えます。MECEの概念も重要で、「抜け漏れ、ダブりなく」問題を捉えることが重要です。 データ分析の具体的な活用例は? 今後、学んだ内容は患者の受診動向調査に活用できると考えています。どのような患者が、どの診療科をどのくらいの頻度で受診しているのかを分析することで、患者のニーズや医療機関の利用状況を把握できます。ただし、実際に活用するためには、現在のデータが分析に必要な要素を網羅しているかを確認する必要があります。 分析の目的は何か? データ分析の目的は、大きく分けて二つです。まず一つ目は患者サービスの向上で、ニーズに合った医療サービスを提供するために分析結果を役立てます。二つ目は病院経営の改善や効率化で、患者の利用状況を分析することで、リソースの最適化が図れます。さらに、定量分析だけでなく定性分析を利用することで、サービス提供時の運用上の問題を解決する可能性もあります。

データ・アナリティクス入門

データ分析で未来を築く!ナノ単科の意義とは

なぜ分析の目的を見失わない? まず、「何のために分析するのか」という「目的」を見失わないことが重要です。その上で、その目的を果たすためにはどのようなデータをどのように分析すれば良いのかという「仮説」を立てることが必要です。その仮説に基づき、必要なデータを収集し「意味を読み取る」ために適切にデータを加工し、その分析結果から新たな発見を導き、より良い意思決定を行うことが求められます。 データビジュアル化の役割とは? データ分析の一連のプロセスにおいて「意味を読み取る」ためには、代表値である平均値および中央値、ばらつき度合いを分布として示す標準偏差を用いた全体像の把握が重要です。また、それらを一目で容易に把握するためにデータのビジュアル化も欠かせません。そして、ビジュアル化されたグラフを見る前に、それまでに得た定量情報や定性情報をもとに自らの解釈と仮説を立て、その解釈・仮説と実際のデータを比較するアプローチを繰り返すことで、分析を深めていきます。 データ分析の順序を守るには? いざデータを前にすると、「仮説を立ててデータを見る」のではなく、「データ同士を比較して仮説を立てる」という癖があることに気づきました。この順序を間違えると意味がなさず、分析を深堀りできません。自然と正しいプロセスを踏むことができるようになるまで、意識して練習を繰り返したいと思います。 予算策定に活かす分析手法は? 直近では、予算策定にこのアプローチを使います。過去の売上や原価をもとに、標準偏差、加重平均、幾何平均、中央値を使ってより確からしい代表値を出し、定性情報も加味して来期の予算を策定します。この際、「仮説を立ててデータを見る(仮説との比較)」ことを意識して取り組みます。また、その代表値にした理由や定性情報の扱いについて第三者と共有し、対話を重ねることで、納得性のあるものとして示すことができるように努めたいと考えています。 今後意識する改善点は? 今後、以下の点を意識して取り組みます。 1. 標準偏差、加重平均、幾何平均について再度勉強し、特徴を深く理解する。 2. 「結論ありき」や「経験と勘」に頼らず、データ分析のプロセスを一つずつ丁寧に踏む。 3. 定性情報を「落としどころ」や「決め打ち」の要素として扱わないように意識する。

「実際」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right