デザイン思考入門

気づきと共に進化する設計術

営業実績の見える化の秘訣は? 部内で営業実績を可視化するシステムを構築する際、ビジネス側がシステム設計を確認する中で、ベンダーさんがしっかりと手順を踏んで進めていたことを改めて知りました。システム構築は何となく進めていたものですが、今回の経験で、体系的に学ぶことの大切さを実感しました。 コンテンツ設計の極意は? また、社内で公開するSharePointのページを作る際に、いきなり制作に取り掛かるのではなく、無意識のうちに行っていたコンテンツ設計の重要性に気づきました。当時は自分一人で資料上で並び替えなどを試行錯誤して使いやすい表示方法を模索していましたが、次回はチームメンバーやユーザーに評価を仰いだうえで、実際の作成に移ろうと考えています。 ユーザー受入の意義は? システム構築の過程で、ユーザー受入テスト(UAT)も単なる操作性の確認に留めず、実際のユーザーが何を実現したいのかを意識し、情報の配置や表現方法をしっかりと検証することの大切さを改めて感じました。 試作品作りの秘訣は? 普段は試作品を依頼する立場ですが、試作品を作る前の要件定義を十分に行うことで、より精度の高い試作品が生み出され、そこからさらにアイデアを加えてブラッシュアップできると実感しています。情報設計、UI設計、ユーザビリティ設計、アクセシビリティ設計を進めるにあたっては、ターゲットを明確に設定することが非常に重要だと感じました。

アカウンティング入門

会計で切り拓く自分だけの未来

会計は何を明らかに? 会計とは、事業活動の結果を財務3表―P/L、B/S、C/F―によって定量的に説明するものです。事業活動では、投資家や債権者からの資金調達を基に、所有資産の構築・使用・投資を行い、その結果としてお客様に価値を提供します。具体的には、P/Lでは売上からコストを差し引いた利益を、B/Sではどの資金源からどの用途に資金が使われたかを、C/Fでは一定期間のお金の流れを示しています。これらの表を理解することで、企業の事業活動がより鮮明に見えると感じました。 面談では何を伝える? 私の仕事では、お客様との面談で試算表や決算書を用い、月次・年次の財務分析と財務評価を行います。その際、お客様の事業活動の成果を、定量的かつ分かりやすく伝えることを心がけています。面談を通して、お客様自身が会社の状況を正確に把握し、今後の方向性や対策を明確にできるよう、指針や指標を示せる力を身につけたいと思います。 数字で実態を把握? また、お客様のP/LやB/Sから事業活動の様子をイメージし、実際に担当者に確認することで、実態と自分の理解の差を埋める努力をしています。加えて、私自身の日常生活においても家計簿を作成し、お金の流れを具体的に把握することを実践しています。 意見交換で広がる視野? 毎週のグループワークには積極的に参加し、他の受講生の意見や考え方に触れることで、自分自身の知見をさらに広げていきたいと考えています。

マーケティング入門

アプリで実感!借入の新常識

商品の価値はどう伝える? 商品の価値は、誰にでも理解できる商品的価値と、個人差がある情緒的価値の二種類に分けられると感じています。情緒的価値は、同じ体験を繰り返すとその感じ方が薄れてしまうため、常に新しい体験を提供し続けることが大切だと考えます。特に女性は情緒的価値を感じやすい傾向があるように思え、その点についてネットなどで調査し、どちらの価値がどの層に響くのかを分析してみたいと思いました。 借入体験はなぜ簡単? 正直、今回のテーマは難しいと感じましたが、本質は「お金を借りることが簡単にできる」という点を伝えることにあります。アプリ1つで即座に口座に振り込まれることや、現状を変える必要がなく(新しいカード発行の必要がなく、ATMも利用可能なため)借入ができること、さらに返済時に手数料がかからない点など、実際に試してみると驚くほど簡単であると感じました。ただし、借入を助長する意図はなく、あくまで新しい経験として提供するために、適度なバランスを保つことが重要だと思います。 プロモーションって工夫ある? また、プロモーションの見せ方にも工夫が必要です。ウェブページやダイレクトメールに実際の利用者の声を取り入れることで、小額でもお金を借りることで生活にどのような変化があるかを具体的に示すことができるはずです。これにより、少し明るい未来への共感を引き出すとともに、借入に抱く抵抗感を和らげる工夫が求められます。

データ・アナリティクス入門

データの見方で変わる分析の魅力

代表値と平均値の意味は? 「代表値」の取り方によって、仮説そのものが変わるため、スタート時点ではデータが正しく取得されているか確認が必要です。また、「平均値」は何を表すために使用するのかを確認する必要があり、すべての現象に平均値が適切であるわけではありません。代表値が正しく算出されているかどうかは、確認できれば行うべきです。例えば、前月や前年同月と比較して、結果が適正範囲であるかどうかを確認することが有効です。 標準偏差の目的は何? 「標準偏差」については、業務で適用するケースがほとんどなく、代表値同士を比較して分析する機会が少なかったと感じています。しかし、標準偏差を確認することで、実際のばらつき具合を把握できる場合があります。 データ推移をどう捉える? また、数字だけの表が緑・赤・黄に色分けされているなど、見た目でわかりやすくしていますが、これが単月でしか使用されていない現状があります。数ヶ月ごとのデータ推移を比較し、グラフ化することで、情報をより深く読み取ることが可能になります。 新たな可視化方法は? 可視化においては、円グラフやヒストグラムを多用していますが、それ以外の手法を取り入れることが少ないと気付きました。他の表現方法を取り入れ、第三者に訴える視覚的なグラフを作ることを試みたいと思います。むしろ、意図的に不適切なグラフも作成してみて、それがどのように不適切に見えるかを学ぶことも重要です。

データ・アナリティクス入門

数値が導く学びの冒険

数字はどう見える? まず、数字の見方について考えると、仮説を立てた上でデータを収集し、その後の分析で仮説の検証を行うという流れが基本だと感じました。AIを使って情報を収集する場合でも、自分なりの考えを持ち、AIから得られた情報と自分の意見を照らし合わせることが大切です。もしも自分の予想と結果が異なった場合、その違いがどこから生じたのかを考えることで、新たな学びのヒントが得られると実感しています。 代表値はどう見る? 次に、データの見方としては、代表値に注目しました。単純平均、加重平均、幾何平均、中央値など、データの性質や目的に応じて使い分けることが必要です。また、散らばりを示す指標としては標準偏差があり、これらの数値をグラフ化することで、直感的に状況を把握できる点も魅力的だと思いました。 業務の数値活用は? 普段の業務では、商品の売上や原価、コストダウンの検討などで、いろいろな平均値を算出することが新たな発見につながるのではないかと感じています。そして、その結果を他者に説明する際に、グラフを活用することで、理解を深め、合意形成をスムーズに進めることができると確信しています。 AIで何を発見? 日常の業務の中で、実際に数値をAIに入力して計算やグラフ化を試みることで、これまで気づかなかった事実や見逃していた視点を発見できるのではないかという期待があります。来週には、何かの案件で試してみるつもりです。

デザイン思考入門

一歩踏み出すデザインの魔法

プロセスはなぜ重要? デザイン思考は、料理と同じように順番や手順、プロセスが大切な考え方です。たとえば、IDEOが採用しているプロセスには明確なステップがあり、計画的に物事を進める点が特徴です。 顧客理解はどう進む? この考え方の流れは、まず人間中心の視点から顧客を徹底的に理解しようとするところから始まります。そして、効果的に伝えるためのビジュアライズやプロトタイピングが実践され、ユーザー、作り手、投資家にまで及ぶ共感の連鎖を生み出します。 企業支援はなぜ有効? 企業支援の現場では、従来の基本的な事業計画書の枠組みではなく、デザイン思考の進め方を採用して、実際の取り組みの中でその有用性を試すケースもあります。たとえば、あるインテリアメーカーが進める新商品の開発において、デザイン思考の視点を取り入れ、改善の可能性を検討する取り組みが行われることがあります。 資料整理はどうする? また、企業初回の支援にあたっては、メモや各種フレームワークの中にデザイン思考に関連する項目を組み込み、資料としてまとめておくことが有効です。実践に向けた準備として、自身で新商品の事例にデザイン思考を適用し、どの部分が改善できるかを検討することも大切です。 基本理解の第一歩は? このための第一歩として、まずはデザイン思考に関する書籍をしっかりと読み、基本的な概念と進め方を理解することが求められます。

クリティカルシンキング入門

問いと内省で開く成長の扉

問いの出発点は? まず最初に、常に問いを立てる姿勢が大切だと感じています。抽象的な問いをそのまま受け止めず、具体的な内容に落とし込むためには、出発点そのものを疑うことが必要です。自分が今何に答えようとしているのか、常に意識することで、無駄な情報に振り回されるのを防げると考えます。 学びは実践できた? 講義を受けたときは学んだ気になっていた部分も、実際に実践してみると忘れてしまっていることが多いと痛感しています。そこで、反復して復習し、学びを確実なものにする努力が必要だと感じました。 問いと仮説は合ってる? また、データ分析や示唆出しの骨子を作成するときは、まず何に答えようとしているのか、その問いと仮説を明確に立てることがポイントです。資料作成に熱中するあまり、本来の目的から逸れてしまわないよう、問いに立ち返ることが効果的だと思います。 フィードバックは活かせる? さらに、月次の振り返り発表では、他のメンバーの資料を事前に読み込み、フィードバックの質を上げることに努めています。普段、上位の方々との会話では迎合しやすい自分を見直し、しっかりと自分でイシューを考える意識を持つようになりました。 内省で成長中? 毎日終業前の15分間は内省の時間として、今日学んだことが実践できたかを必ず振り返るようにしています。この内省を通して、小さな気づきを積み重ね、常に自己成長を意識するように努めています。

マーケティング入門

伝わる商売の極意―顧客視点の力

マーケティングの意味は? マーケティングの基礎を体系的に整理することができ、セリングとマーケティングの違いや「顧客志向」の重要性を改めて実感しました。単にモノを売るのではなく、「誰に売るのか」「何を売るのか(どの部分を強調するか)」「どのように売るのか(どのように伝えるか)」の3点を徹底的に洗い出すことが、顧客による価値創造―ヒット商品の実現―に繋がるという理解に至りました。 顧客対応はどう見る? また、商品やサービスの販売に留まらず、他者との関わり全般においてもマーケティングの考え方は十分活用できると感じています。例えば、自身が担当するバックオフィス業務では、社内のやり取りを一種の顧客対応と捉え、ペインポイントやゲインポイントの追及、新しい書式やフォーマットの共有の際に「イノベーションの普及要因」を意識することで、混乱を防ぎ、伝えたい内容がより効果的に伝わると実感しました。特に、今後は「わかりやすさ」と「試用可能性」を意識して取り組んでいきたいと考えています。 分析で何が分かる? また、STP分析、4P、6Rといったフレームワークの型や活用方法、順位付けについて学びましたが、まだ表層的な知識であるため、まずは実際に活用することで理解を深めていくつもりです。新規の移管事業においても、口コミの感情分析などを通してペインポイントの抽出や競合分析にマーケティングのアプローチを積極的に取り入れていく予定です。

データ・アナリティクス入門

振り返り文に最適なタイトルは以下の通りです: 「フレームワークで広がる仮説の世界」

--- 仮説構築の新たな視点を得るには? 複数の仮説を持ち、複数の切り口を持つ重要性を改めて実感しました。その仮説を考える際にフレームワークを活用できる点は新たな気づきでした。マーケティング戦略を考える際の4Pフレームワークを使うことで、偏りのない仮説を構築するのに役立つことを実感しました。これにより、今後の仮説構築の幅を広げることができると感じました。 戦略フレームワークを業務でどう活用する? さらに、3C、PEST、5Forcesなどの戦略フレームワークも活用できるのではないかと考えています。実際の業務で各フレームワークを使い、仮説構築を試みるつもりです。 四半期を営業1タームで動かしているため、週次での分析やアクションが求められる環境にあります。分析の機会は多いものの、スピードも重視されます。業務において仮説構築をする際、どのフレームワークが活用できるか、また仮説の質と結論を導く時間軸のバランスを取れるかを実践で試し、見つけていきたいと思います。 全体会議前のデータ分析で何を試みる? 具体的に試みるアクションとしては、毎週月曜日の全体会議前に前週のデータを使って結果および今後の動向分析を行います。その際にフレームワークを利用して複数仮説の構築を試みます。これまでの経験に基づく仮説と、その逆説を並行して作成し、フレームワーク活用時の仮説との差異も合わせて見ていきたいと考えています。 ---

クリティカルシンキング入門

フラットな視点が拓く未来

データの説得力は? データに基づいて論理的に導き出された方策には、数ある手法の中でも特に説得力があり、実践する際に効果が期待できると感じました。 本質はどこにある? チームで分析を進める際、議論が拡散して本来の問いを見失わないよう、得られた事実に対して丁寧に目を向けることが重要だと実感しました。実際の業務では、頭の中にある既定の原因や方策にとらわれず、フラットな姿勢でデータと向き合う意識を持つ必要があると感じています。 仮説の進め方は? また、全ての要素を網羅的に分析し、一つひとつ順番に確認する方法は非効率であるため、仮説を立てた上で優先順位を意識しながら進める手法の重要性を改めて認識しました。 満足度の裏側は? 年に一度、事務局を務める競技会の満足度アンケートを通じ、数値では明確に分解できないフリーコメントを整理・分類することで、参加者の満足や不満を体系的に把握することに努めています。その結果からイシューを特定し、真の原因へアプローチする方策を検討する意識が養われました。 チーム視点は整う? さらに、日常業務においても、チームメンバーとイシューに対する視点を合わせ、要素を丁寧に分解することが大切だと考えています。問いかけを通してメンバーの意見を引き出し、原因や方策を決めつけることなく、常にフラットな視点で課題に向き合う姿勢を心がけたいと思います。

データ・アナリティクス入門

ロジックで拓く成長の一歩

何故手順を明確に? これまで「何となく」で進めていた問題解決のステップについて、今回あらためて「What, Where, Why, How」を意識する重要性を実感しました。手順を明確にすることで、全体の流れが整理され、取り組みがより効果的になったと感じます。 現状のギャップは? また、日常業務においてしばしば指摘されるように、「あるべき姿(目標)」と「現状」とのギャップが課題であるという考え方は、自分自身の問題発見力の不足を強く意識させる要因となっています。全体的な視点で課題を捉えたつもりでも、見えていない問題が存在する可能性があるため、ロジックツリーやMECEといったフレームワークの有用性を改めて認識しました。 遅れはどう取り戻す? 実際、現状では採用目標(ありたい姿)に対して採用実績が未達の状況です。今月である第3四半期が締まり、来月から第4四半期に入るため、これまでの遅れをどのように取り戻すかについて、ロジックツリーやMECEを活用して具体的な施策の検討に結びつけたいと考えています。 どんな課題に挑む? 具体的には、以下の点について課題を追求していきます。 ・母集団形成がうまくいっていないため、応募を阻害している要因や、求人票を見ても応募に至らない理由の究明 ・先月と比べて書類選考通過率が大幅に低下しているため、不合格となる要因の分析 ・面接実施率を向上させるための施策の検討

データ・アナリティクス入門

効率的な問題解決の秘訣とは?

仮説を立てる重要性とは? What Where Why Howや問題解決のプロセス、3C、4Pなどのフレームワークを学ぶ中で、「仮説を複数立てる」ことが特に意識できていなかったと感じました。振り返ってみると、実際に分析と仮説検証を行った段階で満足してしまっていた自分に気づきました。 プロセスの抜け漏れを防ぐには? 問題解決のプロセスは、データ分析において無意識に取り組んでいることが多いのですが、時折抜けや漏れが生じることがあります。体系的に整理することで、網羅的に仮説検証を行うことができると感じました。 営業戦略にデータ分析は必須? 営業戦略策定では、データ分析が必ず伴います。What Where Why Howのそれぞれのフェーズで言語化し、仮説を立て、検証して原因を特定し、進めていきたいと考えています。3Cや4Pといったフレームワークは、常に最初に使うのではなく、仮説を立てて分析を行った後にチェックの際に活用したいと思います。 網羅性を確認するフレームワークの使い方は? フレームワークの使用は、まず自分で考え分析を行った後、網羅性を確認するために活用することが大切です。現在進行中の「課題」の分析においても、仮説を複数立て、問題の所在を特定し、原因を突き止めていくという流れを忘れずに進めているところです。網羅的に1ステップずつ進めていくことを意識して、課題の解決に取り組んでいきたいです。

「実際」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right