リーダーシップ・キャリアビジョン入門

自分らしさで切り拓くリーダーシップ

リーダー型の考え方はどう? 全体を振り返ると、リーダーシップの型(指導型、支援型、参加型、達成志向型)にこだわる必要はないと学びました。これまでは自らのリーダーシップを発揮する際に、指導型から支援型や参加型へと変わることを意識していました。しかし、今後は「どんな仕事か(環境要因)」と「どんな相手か(適合要因)」を見極め、柔軟に対応する中で自分らしさを大切にしていきたいと感じました。 会議で何を振り返る? 毎月初めの会議では、進捗管理だけでなく、業務の振り返りと問いかけを積極的に行っています。また、動機づけを忘れずに実施することで、メンバーの自律性やモチベーションの向上に寄与しています。会議においては、振り返りの割合を高め、具体的な事例をもとに本人の言葉で状況を語ってもらいます。そして、傾聴・共感・尊重の姿勢をもって問いかけることで、個々の気づきを促し、そこから得られる教訓を成長に結びつけるサポートをしています。

データ・アナリティクス入門

自分に合った改善のヒント

どこに課題が潜む? 今回の講義を通して、課題の把握と改善のプロセスを具体的に理解することができました。どの段階に課題が潜んでいるのかを明確にし、改善策を講じる際には、単に取り組むのではなく、状況を比較しながら検証することが重要だと実感しました。 どのプロセスが効果的? また、最終ゴールに向かう各プロセスを数値や成果で把握し、どこに最も効果が得られるのかを検討する必要があると感じました。A/Bテストのような手法を用いて、具体的な改善状況をモニタリングしながら継続的な改善を進める体制の構築が求められると捉えています。 どうチームで共有? まずは、自身の業務における最終ゴールに向け、対象者のプロセスを整理して見える化し、改善すべきポイントを洗い出すことが大切です。その上で、実施可能な箇所でテストを行い、プロセス全体と改善の手法についてチーム全体で共有し、全員が理解できるようにすることが必要だと考えています。

データ・アナリティクス入門

目指す姿とのギャップを分析

手法活用はどうする? 5W1Hや層別分解の手法は知識として持っていましたが、実際の業務では目の前の課題にとらわれやすいと感じています。今後は、これらの手法を意識的に取り入れ、より体系的な分析を実施したいと思います。 理想との違いは何? また、分析を行う際には現状とあるべき姿とのマイナス差に注目することが多かったことから、目指す姿とのギャップに関する分析が不足していると感じました。今後は、理想との比較も含め、より実践的な分析に活かしていきたいと考えています。 計測軸は見直すべき? 各部門の工数実績を分析する中で、計測軸をMECEの観点から整備するためにその他の軸も設けています。しかし、全体の一定割合が「その他」に分類されていることから、課題の見落としが発生する可能性があります。このため、計測軸の見直しを行うとともに、現状のあるべき姿との比較だけでなく、目指す姿に対する分析も加えて実施していく所存です。

データ・アナリティクス入門

ヒストグラムで読み解く営業戦略

平均の捉え方は? これまで、平均値については単に合計を個数で割るだけの計算に留め、データのばらつきにはあまり目を向けていませんでした。加重平均や標準偏差といった考え方は知っていたものの、実際の活用方法については具体的なイメージが薄かったため、今回の講義でその使い方を理解することができました。 顧客層の把握方法は? この学びを自分の業務に活かすため、地区全体の顧客売上データをヒストグラムで区分し、顧客層ごとの購買力を把握する手法に注目しました。顧客の売上ランクごとに適切な営業施策を検討し、個別にアプローチできる可能性を感じています。 実践で効果は? 具体的には、まず売上データを取得し、実際のヒストグラムを作成して区分を始めます。その上で、各区分ごとに合わせた営業施策の計画と実施を行い、売上数字の定点観測で変化を読み取ります。このプロセスにより、施策の効果を判断し、次の戦略検討に役立てる予定です。

リーダーシップ・キャリアビジョン入門

あなたの中に眠るリーダー

リーダーシップって何? 今週の講義で印象に残ったのは、リーダーシップが先天的な能力ではなく、肯定的な行動や意識に基づくものであるという考え方です。また、リーダーは従う人が初めて成立するため、状況や場面ごとに誰もがリーダーになれる可能性があるという点も学びになりました。 新規顧客獲得どうする? 私の所属する部署は新規顧客の開拓を担当しています。そのため、リーダーシップを発揮することにより、既存の顧客に固執することなく、新たな顧客との関係構築や業務の進め方を研究・開発することができると考えています。具体的には、まずは積極的に新規の顧客へアプローチし、社外で出会った方々に対して営業活動を実施する予定です。 チーム成果の差はなぜ? また、ライブ授業の中で、同じプロジェクトであってもチームメンバーによって成果に大きな差が出るという体験談があり、なぜそのような現象が起こるのかについて深く知りたいと感じました。

データ・アナリティクス入門

仮説が開く新たな視野

どうやって仮説を立てる? 「仮説を立てる」ことの大切さとして、まず、3Cや4Pなどの関連フレームワークを用いることで、偏った視点に陥らずに物事を捉えることができる点が挙げられます。仮説を設定することで、問題解決へ向けた具体的なアプローチが見えてくるだけでなく、説得力のある説明が可能になると感じました。結果として、自身の意識が向上し、業務のスピードアップや行動の精度の向上に繋がると実感しています。 偏った視点をどう変える? 既存の業務では、どうしても問題解決の視点が偏る傾向にありました。そこで、関連フレームワークの活用が、より広い視野に立った提案に結びつくと思います。まずは、現在抱えている事業の課題に対し、既存情報と新たに必要な情報を整理するところから始めました。必要に応じて関係部署へのヒアリングや、他の事例の調査も実施し、その結果をもとに、より具体的で説得力のある提案へと発展させることを目指しています。

データ・アナリティクス入門

分析の核心に迫る!比較活用の極意

比較の意義は? 分析の核心は、比較にあります。比較を行う際には、対象の選定や条件を統一することが、意義深い分析につながります。また、分析の出発点として、目的や仮説の定義が欠かせません。これらは、できるだけ明文化しておくことが理想的です。 データの見せ方は? さらに、分析結果を伝えるには、グラフやパーセンテージなどで適切にビジュアライズすることが重要です。例えば、自社サービスと競合他社サービスの比較では、自社に有利な形でデータを提示するのが一般的です。また、サービス導入前後の状態を比較し、業務時間の短縮やコスト削減といった導入効果を、定量的に示すことが求められます。 リスクをどう定量? ある程度の定量化を行った提案は既に実施していますが、定量化が難しいと感じられるセキュリティリスクやコンプライアンスリスクの削減についても、納得感のある定量的データとして提示する工夫をさらに進めたいと考えています。

データ・アナリティクス入門

ABテストで磨く実践力

ABテストはなぜ重要? ABテストを正しく実施するためには、まず目的や仮説を明確に定め、比較対象となる条件をしっかり整えることが重要だと改めて学びました。 問題解決はどう進む? また、問題解決のプロセスを順序立てて取り組むことで、何が問題であるのか、どのような仮説が考えられるのか、そしてどのような解決方法を選ぶべきかを体系的に理解できました。マーケティングチームでの売上進捗に関する課題の特定や、適切な打ち手の選択、さらに広告の効果検証など、様々な場面でこのアプローチを活用できると感じています。 多角検討はどうする? さらに、複数の切り口で課題に接近し、必要なデータの洗い出しや抽出方法、そして解決策の多角的な検討を進める過程で、チームメンバーと協力しながら取り組む重要性を再認識しました。今後は、業務の中で意識的にアウトプットの機会を増やし、実践的な成果に結びつけていきたいと考えています。

データ・アナリティクス入門

公平な比較で見つける最適解

打ち手はどう選ぶ? 今週は、課題解決のプロセスにおける打ち手、つまりどう取り組むかという部分に焦点を当てました。その中で、2つの案を比較して検証する手法としてA/Bテストについて学んだのが印象に残りました。A/Bテストは、対象となる条件をそろえることで公平に比較できるため、効果的な意思決定に役立つ方法です。 調査パターンはどう確かめる? 実際の業務ではネット販売が少ないため、A/Bテストそのものは行っていませんが、製品の発売前には複数のパターンを設定して比較検討する調査を実施しています。たとえば、味のバリエーションや商品名・コンセプトなど、さまざまな要素について、それぞれのパターンを複数同時に調査することで、目的にかなった最適な方向性を見極めています。今回の学びを通じて、調査目的を明確にする重要性を改めて認識し、今後は目的に沿ったパターン設定をより一層意識して取り組んでいきたいと考えています。

データ・アナリティクス入門

シンプルな挑戦、未来への一歩

A/Bテストの魅力は? A/Bテストが注目される理由は、そのシンプルさにあります。限られた要素を2つ以上のパターンで比較することで、運用や判断がしやすくなります。また、テスト用の画像やテキストを用意するだけで低コスト、少ない工数で実施できるため、実験のハードルが低いのも魅力です。さらに、いきなり新しい案を採用する場合と異なり、段階的な改善によりリスクを最小限に抑えながら効果を測定できる点も大きなメリットです。 業務問題の解決策は? 日々の業務において発生する問題に対しては、「What」(問題の明確化)、「Where」(問題箇所の特定)、「Why」(原因の分析)、「How」(解決策の検討)というステップを意識し、効率的に対処しています。特に、問題の本質を捉えるために業務プロセスを細かく分解するアプローチを採用しており、複数の解決策を洗い出し、その根拠を基に最適な方法を選択するよう努めています。

データ・アナリティクス入門

データが照らす改善の道

ABテストの意義は? ABテストを通じて、単にAかBを選ぶのではなく、前提条件を統一した上で比較・検証することが次の施策につながると感じました。問題のある箇所については、プロセスごとに分解し整理することが大切だと改めて認識しました。 数字で何が分かる? また、具体的な数字を取得することで、試行した打ち手がどのような効果をもたらすかを明確にしたいと思います。サイトに限らず、アンケートなどを活用して課題を抽出し、想定される項目のほかに自由記述も設けることで、定量データとして予想外の回答が得られるかどうかを確認できる工夫が必要です。 FAQ改善の狙いは? 業務面では、FAQサイトの問題箇所を特定し、改善案に基づいた比較テストを実施することが重要です。過去のPV数などのデータを把握し、変更後の数値の変化を確認することで、PDCAサイクルを効果的に回していきたいと考えています。

データ・アナリティクス入門

データ比較で見える改善のヒント

データ分析に何を学んだのか? データ分析とは、比較することが重要であると学びました。特に、異なる要素を比較する際には、同じ条件下で行うことが大切です。また、周囲に結果を共有する際には、グラフを活用して直感的に理解できるアウトプットを作成する工夫も必要です。 クライアントのフィードバックはどう活かす? 私はサポート業務を担当しており、クライアントからのフィードバックをアンケート形式で収集しています。昨年との比較や、NPSとドライバー項目の相関を分析することで、組織の強みや弱みを明確に把握し、課題を抽出して解決に向けたアクションを実施していきたいと考えています。 定性的なデータの課題は? これまで、フィードバックから得られるのは定性的なデータのみで、昨年との比較やスコアが低下した理由の分析が不足していました。今後は、これらの点を深掘りできる力を身に付けたいと思います。

「業務 × 実施」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right