データ・アナリティクス入門

仮説実証で未来を切り拓く

どうやって目的を決める? 目的や目標を明確に定めた上で、必要な判断を下すための着眼点を学ぶことができました。事象におけるステップや因果関係を意識し、まずは分析の仮説を立て、その後実際のデータ解析を通じて検証しながら、問題を絞り込む手法が有効であると理解しました。 どう検証すれば確実? 問題解決型の業務においては、事前に予想される因果関係を各種ツールを用いて整理し、データで検証することで、より正確な判断を短時間で行うことが可能だと感じています。一方、課題創造型の業務では、目的と背景を基にツールなどを活用して仮説を組み立て、実践と検証を繰り返すことで、より良い業務実施につなげる方法があると考えます。 どう計画を固める? 改めて、まずはしっかりと目的と目標を決めることが重要だと感じました。関係者を巻き込み、十分な時間をかけて納得のいくプランを作り上げ、その上で複数の仮説を立てる必要があります。また、各種分析手法を実践する中で自分のスキルと経験を徐々に深め、より多角的な判断ができるようになりたいと考えています。

データ・アナリティクス入門

振り返りが照らす学びの道

目的と手段の違いは? 分析に取り組む際、まず「要素の分類化」や「比較」という視点を確認しました。分析はあくまで手段であり、目的ではないという点が印象に残ります。これにより、仮説を元に進める中で、途中から「差分探し」が目的化してしまわないよう注意する必要性を感じました。 レポート設定の意義は? また、定期的な分析レポートを実施する際には、改めてその目的を明確に設定することが大切だと再認識しました。業務の中で、分析自体が目的とならず、真に必要な意味を見出すために、常に差分に敏感になり、その差分がどのような意味を持つのかを意識する習慣を身につけることが求められます。 PDCAはどう実践する? さらに、すべての分析には仮説を立て、得られた結果に基づいて施策のPDCAサイクルを実行することが基本です。報告時には、ただ結果を示すだけでなく、分析の目的や背景を相手に伝える工夫が必要です。分析を終えた後は、やりっぱなしにせず、必ず振り返りの時間を設け、次のアクションにつなげることが今後の改善に寄与するでしょう。

戦略思考入門

フレームワークで磨く戦略思考

戦略学習はどう感じる? 戦略的思考を養うために、さまざまなビジネスフレームワークを学び、それらの活用方法を理解できたことが大きな収穫です。普段の業務において、意識的にフレームワークを取り入れ、着実にスキルとして身に着けることが重要だと考えています。 戦略実践で何を実感した? 勤務先で長期のビジネス戦略を立案する際、学んだフレームワークを手元に置きながら、使えるものを積極的に適用しています。その過程で、不足している情報や欠けている視点を明らかにし、それを補うことで、より高い価値の創出を目指しています。また、人事戦略の立案においても、これらのフレームワークを活用するよう努めています。 次の一手は何にする? 具体的な取り組みとして、以下の3点を実施する予定です。1.今年の人事戦略立案にフレームワークを活用する。2.会社のビジネス戦略のディスカッションの際、フレームワークを適用して重要な視点を見出し、それをインプットする。3.自身が学んだ内容をチームメンバーや友人知人に説明し、理解を深め定着させる。

クリティカルシンキング入門

もう一人の自分に出会う瞬間

判断のポイントは? 業務において、経験則に基づいて判断できる範囲では、スムーズに業務を進めることが可能です。しかし、実績のない経験則や、必要十分な情報に欠ける状況では、自信を持って意思決定することが難しくなります。そのような場合には、ロジックツリーを用いて自らの思考を体系的に整理することが有効です。こうした方法によって、問いと回答を明確にし、求められている内容を正確に把握する手助けとなります。 意識の高め方は? また、具体化と抽象化を繰り返し実施して、思考の偏りが生じていないかを常に確認することも大切です。さらに、自分自身に「なぜそう考えるのか」という問いを投げ続けることで、別の視点を持つ「もう一人の自分」を育てる意識が培われます。 活用の方法は? このプロセスは、日々の業務や学びにおいて、視点、視野、視座という三つの観点を意識的に活用することで、より豊かな洞察へとつながるでしょう。今後は、これらの考え方を具体的な状況にどのように適用していくのか、実践を通じて深めていくことが期待されます。

データ・アナリティクス入門

データ分析で役立つ具体的アプローチ

分析の流れをどう把握する? 分析とは、目的、仮説、問い、そしてデータ収集・加工を行うという流れをきちんと把握することが重要だと感じました。また、インパクト、ギャップ、トレンド、ばらつきなどの各因子を鑑みたうえで数値を見ていくことが必要であると理解しました。 代表値の注意点とは? 何かとすぐに飛びつきがちな代表値の中でも、特に単純平均値には注意が必要です。業務では、サイト流入数や売上など様々な数値を見る機会が多いため、一つの代表値だけでなく、多様な代表値を目的をもって算出したり、散らばりを意識した分析を行いたいと感じました。 データ収集のポイントは? 日次、週次、月次など期間を定めた上で、数値の意味を考えたデータ収集や分析を行うことが重要です。過去のデータを活用しながら自分なりの仮説を立て、今回学んだフロー(目的→仮説・問い→データ収集→検証)を実施していきたいです。また、インパクト(重み)、ギャップ(差異)、ばらつき(分布)といった視点を意識しながら、数値の意味を考えていきたいと思います。

データ・アナリティクス入門

データ解析の「やったつもり」を脱却する方法

直感的な解析で本当に大丈夫? 本講座の学習と総合演習を通じて、"直感的なデータ解析はNG"であることを強く感じました。合計や平均などの一般的な解析手法を反射的に実施してしまう癖があり、それらを実施しただけで"やったつもり"になってしまう場面があることを再認識しました。 ビジネスに繋がる数字とは? 業務において求められているのは、誰でも分かる当たり前の数字を出すことではなく、ビジネス上の優位性を生む数字です。例えば、競合他社より売り上げを伸ばす、納期や費用を圧縮するといった具体的な目標に直結する数字が求められます。今後は、どのデータをどう活用すればこうした差を生む数字を導き出せるかを整理し、解析業務の棚卸を行いたいと考えています。 データの棚卸しで見直すべき点 具体的には、定型業務の棚卸を実施し、これまで報告してきたデータの有効性を見直す予定です。これまで蓄積してきたデータが、競争上の優位性を生む数字となっているかを評価し、有効であれば継続し、効果がなければ見直しを行い、代替案を提案します。

データ・アナリティクス入門

分析の楽しさ!戦略と挑戦の日々

各要素をどう捉える? 分析の肝は、漏れなくダブりなく各要素を洗い出し、比較することで見えてくる事象から仮説を立てる楽しさにあると実感しました。一方で、効率的で分かりやすいツールの習得がまだ十分でないため、その点を今後解消していきたいと考えています。 売上拡大はどう実現? まず、売上拡大のための各種施策の打ち出しが必要です。また、お客様の行動を分析することでアプローチ方法の見直しが求められます。現状の自社商品の強みや弱みを把握し、適正な人員配置や営業行動計画、業務プロセスの見直しを実施するためには、関係各所のリーダーと連携することが重要です。 育成と戦略の見直しは? さらに、スタッフ育成においては、早期に戦力となっていただくための教育制度の見直しを進め、会社の方針や営業目標を浸透させる努力が必要です。加えて、マーケティング施策の見直しでは、離脱要因を特定し改善を図るとともに、他社の事例研究も欠かせません。最後に、営業戦略の再検討を行い、何が効果的であるのかを見直すことが求められます。

データ・アナリティクス入門

未来を切り拓く問題解決力

ステップで何が分かる? 問題解決のステップ「What」「Where」「Why」「How」を意識することで、頭の中を整理し、分析を実施しやすくなります。直感的に何が問題でどのように解決すべきかを考えがちですが、この手順を踏むことで、問題の本質を的確に捉え、解決策を導きやすくなります。 理想と現実はどう違う? また、あるべき姿と現状とのギャップを定量的に示すことも非常に重要です。 企画策定はどう進む? たとえば、規程の改正やガバナンスの運用に関する企画を策定する際には、企画の目的や解決すべき問題を問題解決のステップに沿って整理します。そして、あるべき姿と現状とのギャップを定量的に示すことで、企画の意義が伝わりやすくなり、賛同を得やすくなります。 スピードと注意点は? 常に問題解決のステップを意識し、問題の本質を見極める力を養うとともに、課題を示すデータが整っているか確認することが大切です。一方で、業務のスピード感も求められるため、事前の分析が過剰にならないよう注意が必要です。

データ・アナリティクス入門

ABテストで成果を生むコツと課題

問題の原因をどう探る? 問題の原因を探るためには、まずプロセスを整理し、どの部分に課題があるのかを特定することが重要です。複数の仮説を立てて、それぞれの解決策を丁寧に検討する必要があります。ABテストは、少ない工数で低リスクに検証ができるため、おすすめの方法です。 ABテストの利点と課題は? 今回のテーマは自分の日常業務に近かったため、より理解が深まりました。ABテストについては、各媒体がAIで最適化するケースが増えており、実施が容易になっている一方で、「なぜこちらの方が成績が良いのか?」といった点が理解しにくくなり、次回に活かすのが難しいと感じます。 重要な視点をどのように意識する? 重要なのは、What、Where、Why、Howの視点を意識することです。ついついHowの検討に集中してしまいがちですが、プロセスを分解し、仮説を立てる手順を怠らないようにしたいです。また、仮説を立てるためには内部・外部の両面からの知識が必要ですので、情報収集の重要性も再認識しました。

データ・アナリティクス入門

検証が導く次の一手

結果の背景は何? PDCAサイクルにおける「C(Check)」の重要性を改めて実感しました。業務では、A/Bテストの結果が出るとすぐに「採用」と「不採用」の判断に偏りがちですが、なぜその結果になったのかという背景や要因の検証が不足していると、本質的な成果や再現性のある改善につながりません。 結果だけで大丈夫? 自身の業務においても、施策実施後に結果だけを見て結論を出す傾向がありました。しかし、今後は仮説とのずれや背景要因を丁寧に分析し、再現性のある改善策を立てる必要性を感じています。 検証で進化できる? そこで、施策の実施後は必ず検証の時間を確保し、PDCAサイクルの「C(チェック)」を強化することを行動計画に盛り込みます。具体的には、仮説と結果の差異を可視化し、原因分析のためのデータを事前に収集・整理する仕組みを整え、定期的な振り返りの場で結果の背景を多角的に検証します。これにより、直感や思いつきに頼らず、根拠ある意思決定を進めていきたいと考えています。

データ・アナリティクス入門

数字が導く明日の解決策

問題箇所はどこ? 問題個所の特定は、次のアクションプランを考える上で非常に重要です。数値に基づいて問題箇所を洗い出し、優先順位を明確にすることで、納得のいくアクションプランを策定できます。また、数字に紐づく具体的な行動も同時に把握することで、プロセス全体の見直しの基準が整います。 課題解決はどう進む? 課題解決は、問題をプロセスに落とし込みながら進めることが求められます。What、Where、Why、Howといった基本の枠組みに沿って対応することで、業務改善の手法の一つとして、DX化推進の取り組みも効果的に実施できるのではないでしょうか。 目的設定はどう? 目的の設定においては、まず問題や課題を洗い出し、その中から複数ある項目に対して優先度を付け、分析と順位付けを徹底します。その上で、アクションプランを策定することが求められます。さらに、UI/UXに関わる場合はA/Bテストを取り入れ、スタンダードなフレームワークに沿った進め方を実施することが重要です。

クリティカルシンキング入門

小さな問い、大きな発見

問題はどう浮かび上がる? 要素を分解して検討することで、解決すべき問題を明確にすることが可能です。データを提示する際にも、意図を持って伝えなければ単なる数字の羅列に過ぎず、その意味は薄れてしまいます。また、問題解決の方向性を定める際は、ただアイデアを出すのではなく、まず適切な問いを立てることが重要です。問いの立て方次第で、最終的な成功確度が大きく変わるため、時間と労力を問いの検討に注ぐべきだと感じます。 現場でどう対策する? 具体的な業務の現場では、所属する広告グループでの広告施策の検討において、この考え方が非常に役立ちました。たとえば、ブランドの健康状態について、どのような問題や課題が存在するのかを細かく分析し、その上で広告という刺激がどのような対策となり得るかを論理的に整理することが求められます。ブランドの課題や背景を正確に把握し、対策の方向性や具体的な手段を順序立てて考えることで、実施する施策が本当に課題解決に寄与するかどうかを見極めることができるのです。

「業務 × 実施」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right