クリティカルシンキング入門

適切な問いが導くデータ活用術

適切な問いはなぜ? 今週の学びを通じて、問題解決における「適切な問いの設定」の重要性を改めて認識しました。明確に定義された「解決すべき課題」が、効果的な分析と解決策の導出につながることを学びました。また、データの適切な加工と分析によって情報を構造化し、視覚的に明確な形で提示する手法の有用性を実感しました。さらに、データの図表化が分析の精度向上に寄与することを体感し、実務での具体的な活用方法を見出すことができました。 現職での実践は? 「問いを立てる力」と「データの分析手法」を現職の業務改善プロジェクトで実践していきます。業務フローの課題特定に際しては、チームメンバーと「本質的な課題」を共有し、分析を深めるプロセスを確立しようと考えています。また、提案資料作成においてはデータの視覚化を通じて説得力を高め、経営層の的確な意思決定をサポートしたいと思います。 解決力高める秘訣は? 課題解決力を高めるため、以下の取り組みを実践します。毎週の振り返りで課題を整理し、本質的な問いを設定し、分析結果を図表化してチームで共有し、活発な意見交換を行います。わかりやすく論理的な資料作成を心がけ、改善を重ねます。また、学んだ内容を繰り返し実践し、定期的な振り返りで成長を目指します。これらの取り組みを通じて、実務での課題解決力を高めていきたいと考えています。

戦略思考入門

フレームワークで見える業務改善の秘訣

関係者間のゴール共有は必要か? ひとつの課題に対しても、関係者それぞれがスタートの時点でゴールやプロセスを共有しておくことによって、方向性を見失わずに戦略を立案できます。しかし、経験値が高い人や声が大きい人に引っ張られることはよくあります。そのため、フレームワークを使って課題や情報を分析し、優先順位や重要度を整理することが重要だと思いました。 業務でフレームワークは活用できてる? 現在の業務では、中期計画を策定する際にSWOT分析やPEST分析を使用していますが、実際に課題を十分に理解し洗い出せているか自信がありません。上司の出す結果をそのまま受け止める傾向があります。今回の学習で得た具体的な事例を参考に、業務に落とし込んでみたいです。特にカスタマーサービスにおいては、商品や営業に直接関与していないため、サービス業におけるフレームワークの効果的な活用法について考えていきたいです。 業界分析は計画にどう結びつく? 業界の分析や自社の強み・弱みを踏まえて、優先的に強化すべき領域や必要な対応を整理し、進めてみます。既存の計画についてもフレームワークを適用し、具体的な改善点を見つけ出し、現在の計画にどのように結びつくかを確認して、理解を深めていきたいと思います。また、本講座を通じて他の業界の視点を学び、自分の視野を広げたいと考えています。

データ・アナリティクス入門

仮説が導く実践の分析術

目的設定は正しい? データ分析は、単に比較するだけではなく、まず目的を明確にし、自分なりに仮説を立てるところから始まります。仮説に基づいて分析作業を進め、その結果から具体的な示唆を得る一連の流れを意識することが重要です。 比較条件は合ってる? また、比較対象とする対象の条件を揃えることが不可欠です。この前提が誤っていると、適切な分析が行えなくなるため、比較対象に問題がないかどうかも注意深く判断する必要があります。 採用現場でどう役立つ? 採用活動の現場では、以下のような場面でデータ分析が役立つと考えています。まず、エージェントや媒体の成果を基にした母集団の形成。次に、面接の実施率や内定承諾率など、候補者起因の歩留まり改善。そして自社の採用活動全体のパフォーマンス管理や改善点の発見、さらには新たなサービス導入の検討時にも活用できるでしょう。 集計方法に再考は? 現状、応募数や内定数など各選考フェーズでの実数や展開率の集計は行っていますが、そのデータの取り方が最適かどうか、また他により良い集計方法がないか再検討する余地があると感じています。さらに、定量的な成果を示すことで、他部門への説得材料とする狙いもあり、現状の課題、例えば選考のリードタイムの短縮などについて具体的に提示し、改善に向けた会議を進めていきたいと考えています。

マーケティング入門

自分発見!学びと挑戦の記録

イノベーションで何が変わる? 商品の売れる・売れないを考える際に、イノベーションの普及要件というマーケティングフレームワークを学びました。このフレームワークは、比較優位、適合性、わかりやすさ、使用可能性、可視性の5つの視点で商品を分析するものです。ある成功事例から、わかりやすいキャッチコピーや効果的なネーミングが、実際の商品価値を届ける上で非常に重要であると実感しました。 競合の罠はどう防ぐ? また、競合ばかりに意識を向けすぎる差別化の罠にも注意する必要があると学びました。万人向けの商品展開に固執せず、市場を細分化し、ニーズを深掘りすることで、顧客の価値観に沿った商品の提供が実現できると考えています。 どう伝えれば響く? さらに、イベントのタイトルやキャッチコピー、内容を企画する際には、イノベーションの普及要件を意識し、ターゲットにしっかりと伝えたい価値や訴求点が届くよう工夫していきたいと感じました。特に、比較優位性や分かりやすさの点については、直近のイベントで課題を実感したばかりなので、検証を重ねながらより魅力的に伝わる方法を追求したいと思います。 改善策はどう見つかる? 施策ごとにこのフレームワークを振り返り、学んだ視点を活かしながら、ネット販売などにおいて売れていない原因を分析し、改善策を考察していくつもりです。

マーケティング入門

マーケティングの基礎を楽しく学ぼう!

マーケティングとは何か? マーケティングとは、物が売れる仕組みを作ることです。顧客志向で物事を考え、販売や顧客のインサイトを深く理解し、売れる方法を考えて顧客満足につなげる手段です。世の中を見渡すと、自動販売機が良い例と言えるでしょう。コーヒーや清涼飲料水、炭酸飲料などをいつでもどこでも手に入れたいという顧客の需要を満たすことができるので、自動販売機は現在の生活に溶け込んでいます。このような例を参考に、尽きることのない需要を見出し、どれだけ便利に提供できるかを学び、仕事に結びつけていきたいと考えています。 バックオフィスの鍵は? バックオフィスの視点では、営業店や本部などの内部の人間が顧客となります。彼らが求めているのは、費用対効果の高いものです。それをどれだけシンプルに活用できる仕組みを作るかが現在の部署の鍵だと思います。そのための方法や手段を学び、仕組み作りに活かしていきたいと考えています。 基礎学習と実践の重要性 まずは、マーケティングの基礎を確りと学び、顧客志向で物事を分析する力をつけたいと思います。そして、現在の課題や問題を顧客目線で見直し、ブラッシュアップしていきます。どのようにすれば売れる仕組みができるのかを意識し、学んだことを同僚と日常的にアウトプットすることで理解を深めていきたいと思います。

デザイン思考入門

可能性を拓く営業とデザインの出会い

デザイン思考はどう違う? 今回の講義では、デザイン思考が唯一の正解ではなく、仮説・分析・検証といった他の思考法と組み合わせることで真価を発揮する点が印象的でした。特に、コンサルティング的なアプローチとの補完関係を強調していた内容が新鮮に感じられ、今後、SPIN営業法との親和性やその違いについてもさらに深掘りしてみたいと思いました。 視点の広がりは何故? また、課題で「まな板のフロー」を考える際、無意識にデザイン思考の5ステップを模倣してしまった経験から、視点の幅を広げる必要性を強く感じました。 顧客対話はどう磨く? 営業活動においては、顧客の課題を深く理解し、潜在ニーズを引き出すことが重要です。デザイン思考の「共感」や「アイデア発想」は、SPIN営業法の質問設計と共通する部分があり、顧客との対話をより創造的にする効果があると感じています。さらに、製品提案にとどまらず、顧客体験全体を設計する視点を取り入れることで、差別化された価値提供が可能になると考えています。 共感と発想の理由は? 今後は、まず顧客ヒアリング時に単なる要件確認に留まらず、顧客の背景や感情に踏み込む「共感フェーズ」を意識します。次に、営業提案においては、既存の枠を超えた解決策を模索する「アイデア発想」のプロセスを積極的に組み込んでいきたいと思います。

データ・アナリティクス入門

多視点で挑む実験の力

A/Bテストは何が大事? A/Bテストの重要性を深く理解することができました。従来は、既存の手法でうまくいかなければ次の手法を試し、その結果を比較すればよいと考えていました。しかし、どちらか一方の仮説に固執することは、結果に対してあらかじめ決めつけるリスクにつながると実感しました。 仮説検証の新発見は? また、A/Bテストに沿った仮説検証を通して、仮説をより深く掘り下げるとともに、新たな着眼点を見つけやすいことにも気づきました。これにより、一方の仮説に偏ることなく、複数の視点から結果を検証する必要性を再認識しました。 言語化で何が整理できた? さらに、これまで問題解決に取り組む際、自然と「What、Where、Why、How」のステップで考えていたものの、言語化を通じて自分の思考が整理できたと感じます。特に、今回の学びから「Why」や「How」の視点が不足していることに気づき、A/Bテストを利用した検証プロセスを通して、データ分析を含めたより効果的な問題解決のアプローチを模索していきたいと考えました。 どう視野を広げる? 課題に取り組む中で、仮説や結果について決めつけがちな自分に気づくことができたため、今後はさまざまな観点から視野を広く持ち、仮説の立て方や分析方法を多角的に見直していく努力を続けたいと思います。

データ・アナリティクス入門

分析で見つける未知の可能性

分析開始の目的は? 実際に分析を始める前に、その分析の目的を明確にすることが重要です。目的が曖昧では、分析自体の意味がなくなります。分析の本質は比較にあります。比較を行わなければ、物事の良否を判断することはできませんし、絶対的に良いものや悪いものというものも存在しません。意思決定が相対的な比較によって行われると考えると、分析(比較)の重要性が一層理解されます。 比較対象の選び方は? そのためには、適切な比較対象を選ぶことが必要です。しかし、すべての情報を持っているわけではなく、自分の理解が正しいかもわからないため、この作業は現実としては難しいこともあります。 解決すべき課題は? 分析を通じて解決したい課題は多岐にわたります。たとえば、効果的な授業や学習方法を知りたいとき、また生徒募集活動をどの地域で積極的に行うべきか、生徒や保護者の学校への満足度、勤務校の強みと弱みの分析などです。これらの目的を達成するために、適切な分析を行うことが望ましいです。 どんなデータ収集? まずは、各目的に応じたデータ収集から始めたいと考えています。生徒の成績推移や大学合格実績といった定量分析に加え、アンケートやインタビュー(個人・集団)による定性分析も通じて、データを集め、その中から中核となる特質を抽出するようにしたいです。

データ・アナリティクス入門

実践力が輝く!学びの現場改革

3Cの分析方法は? 3Cは、事業環境を多面的に捉えるためのフレームワークです。Customer(市場・顧客)、Competitor(競合)、Company(自社)の3つの視点から状況を分析し、事業戦略を立案する際の参考にします。 4Pで何を判断? 一方、4Pは3Cの自社部分をより詳細に検討するためのツールとなります。Product(製品)、Price(価格)、Place(場所)、Promotion(プロモーション)の4つの要素を軸に、どのようにサービスの良さを顧客に訴求するかを分析するために活用されます。 現場の課題は? 観光客にとっては、免税手続きの所要時間が短い中で対面式のアンケートや、時間を要するインタビューは取り組みにくい方法と言えるでしょう。また、クレームが発生した際には、最低でも1名の通訳が苦情対応のため常駐しなければならず、現場では実質的に人員が減る状況となります。 改善策はどうする? これまでのアンケート調査は一度のみ実施しており、対面で紙に選択肢を記入していただく方法にはお客様に抵抗があると感じました。今後はデジタル形式で「後ほど実施していただいても構いません」と伝え、アンケートに協力していただいた方々には次回利用可能なショッピングクーポンを提供することで、対応の改善を図ろうと考えています。

クリティカルシンキング入門

多彩な視点で広がる思考の旅

思考の偏りをどう克服する? 思考の偏りや質問の誘導を意識しながら物事を捉えるトレーニングが必要だと感じました。ひとつのテーマに対しても個人の属性や立場によって様々な意見や視点が出てくることを再認識し、自分一人で同じように抽出するためには何ができるのかを考えました。 まず、自身に偏りがあり、考えが誘導される要素があることを認識することが重要です。それを自覚した上で、物事を捉えることで思考の幅と高さが広がると思います。 問い掛けの精度をどう向上? 骨子作成の段階で目的に対する問い掛けの精度を向上させることが必要です。取引先や関連部署のニーズ把握と、具体的なソリューション提供にこれを活用できると考えています。何をどうしたいのかをセットし、それに対してどの視点で切り口を設けるのか、現状把握が正しく行われているのかを明確に論理的にすることで、自身や自社の成果に繋げられると思います。 現状分析と課題抽出のポイント 具体的には以下の2点が挙げられます。 1. 現状分析の質の向上:意図的に通常費やしている工数を倍に設け、目的に対しての分解につながっているかを確認する。 2. 課題抽出の広がりの意識:MECEフレームワークの意識と徹底を行い、余裕を持った上司や同僚からの意見抽出の場を設定する。他者の視点の重要性を再認識したためです。

データ・アナリティクス入門

仮説思考で学びを実践、諦めない心の重要性

仮説思考で成果を出すには? 仮説思考の鍛え方について体系的に学ぶことができ、非常に勉強になりました。毎回同じような学びであっても、体系的に言語化することで再現性が高まるため、自分で実践するにも他の人にアウトプットするにも非常に参考になります。 諦めない姿勢の重要性を再確認 仮説思考の鍛え方を通じて、「諦めず・熱意を持って・仮説を考え続ける」ことの重要性を改めて感じました。理解するだけではなく、それを実際に実践し、成果に結びつけることは非常に難しいです。そのため、「諦めない」ことがもっとも大切であると過去を振り返って改めて感じます。 継続的なデータ分析の意義とは? 経営データのデータ分析については、じっくりと分析する機会はあるものの、継続的には行っていません。課題は次々に発生するため、つい短絡的に結論を出してしまいがちです。これからはしっかりと時間を確保し、仮説検証を繰り返し行って問題解決の精度を高めていきたいと思います。 タスク整理と学びのルーチン化 まずは自分のタスクを改めて整理し、優先順位の低いものは権限移譲するか、削減して時間的余裕を生み出します(9月中に実施します)。また、毎週土曜日は極力「学びと実践」の時間とし、仮説検証を毎週のルーティンとして実践していきたいと考えています(今週から開始します)。

データ・アナリティクス入門

データ分析で変わる意思決定の未来

データ分析の意義とは? データ分析をビジネスに活用することの本質を理解し、考え方や手法を再設計して、自分のものにしたいと感じました。データ分析で課題を解決するとは、「勘と経験に頼る意思決定の方法を、データ分析を用いた合理的な意思決定へと改めること」を指しています。そのために必要なことを次のように整理しました。 シナリオ設計のコツは? まず、ビジネスに貢献するシナリオを描くことが重要です。そして、データを基にした意思決定プロセスを設計し、解消したい問題と解決する課題を言語化します。さらには、意思決定のプロセスを形式知として明文化することが必要です。 問題点は何か? 具体的な問題としては目標未達があり、その課題として購入増加、キャンセル回避、Webサイト離脱の回避、および集客増加といった点が挙げられます。これらの課題を「意思決定プロセス」に深く掘り下げていくことが今後の大きな課題と考えています。 今後の展望は? 今後の6週間では、問題と課題のさらなる言語化を進めていきたいと思っています。また、意思決定プロセスの6種類のうち、特にマーケティング型の「仮説試行型」と、経営者の思考バイアスを低減させるための経営者判断型について、さらに学びたいと考えています。そして、意思決定プロセスの形式知化を設計していく計画です。

「分析 × 課題」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right