データ・アナリティクス入門

問題解決の視点で成長する方法

何が最優先? 問題解決の考え方では、まず最も重要な問題を特定することが大切です。「何が問題か?」という視点から始め、数値を比較して問題の所在にあたりをつけます。また、理想の計画と現状の未達成状況を把握し、そのギャップを埋める方法を検討します。数値の比較では、見る必要のない範囲を見極めて効率的に分析を進めることも重要です。 現状はどう捉える? 現状把握の際には、問題をさらに深掘りするための切り口を考え、その仮説や優先順位をつけていきます。この過程では定性的な情報も取り入れることが重要です。特に、数値に頼りがちな初期の分析では、仮説の形成において定性的な情報を活用することが印象的でした。 分解して見える? ロジックツリーの層別や変数の分解を用いて課題に取り組むと、目標達成のための具体的な施策が見えてきます。たとえば、採用施設数や売上の向上、コストカットといった課題に対処する際は、変数分解の考え方が役立ちます。また、メーカー推奨品の効果を確認する際には、計画と実績を数値で評価し、感覚的な良し悪しに頼らず客観的に判断することが求められます。 分析の工夫は? 分析を進める際には、「見なくてもよい範囲・数字・切り口」を適切に除外することで、効果的な分析が可能になります。データの切り口についても、何が効果的か考え、必要であれば追加のデータ取得を検討します。また、チームメンバーとアイデアを共有し、他に異なる切り口の可能性がないかを確認することも重要なプロセスです。

データ・アナリティクス入門

代表値で解く!データ発見の旅

代表値の魅力とは? 今回の学習では、従来の平均値だけでなく、加重平均、幾何平均、中央値といった代表値の種類について新たな知見を得ることができました。それぞれの概念を学ぶことで、データ分析の基本的な考え方を再確認する良い機会となりました。 グラフ選定のポイントは? また、グラフの選び方についても、これまで感覚的に選んでいたグラフの代わりに、何を伝えたいのかという結論を明確にした上で選定する重要性を学びました。これにより、視覚的にデータを効果的に伝える方法を理解できるようになりました。 データ読み取りの工夫は? さらに、データの読み取りにおいても、これまで直感に頼って見ていた部分を見直し、特徴的な箇所に注目するという具体的な指標を取り入れる点が印象に残りました。より重点的に情報を把握する手法を学べたことは、今後の業務に大いに役立つと感じています。 Web分析の疑問点は? 業務面では、Web分析の中で代表値の使用機会が少なかったため、なぜ使用しないのか疑問が生じました。具体的には、1ユーザーあたりの平均ページビュー数や訪問時間帯の最頻値の取り扱いについて、今後の必要性を再考するきっかけとなりました。 数値羅列の問題点は? 最後に、CSVで抽出される数値の羅列では異常値に気づきにくいという実務上の課題も再認識しました。毎日管理しているデータを視覚化することで、より直感的に異常値や問題点を把握し、効果的な分析につなげたいと考えています。

データ・アナリティクス入門

仮説検証で未来を切り拓く

仮説の立案方法は? 今回の講義では、「問題解決の4つのステップ」のうち、問題箇所を特定した後に原因を究明するため、原因の仮説を立てて検証するデータを集める考え方を学びました。原因の仮説立案には、3Cや4Pなどのフレームワークが有効で、視野を広げる軸となると実感しました。 なぜ複数仮説? また、実践力を養うためには、決めつけずに複数の仮説を立て、ヒト・モノ・カネといった要素に網羅性を持たせることが大切です。数字をただ分析するのではなく、何と何を比較して検証すべきかを深く掘り下げる視点が必要だと感じました。 仮説の分類と時間は? ビジネスにおける仮説思考は、「ある論点に対する仮の答え」として、結論の仮説と問題解決の仮説に分類され、時間軸(過去・現在・未来)に沿って内容が変わることが分かりました。正しく仮説検証を実施することで、説得力や仕事のスピード、精度が向上することも理解できました。 仮説習慣の活用法は? 普段から仮説提案型営業を心がけている私にとって、今回の講義は仮説検証の重要性を再認識する良い機会となりました。今後は、3Cや4Pのフレームワークを具体的に活用し、仮説を考える習慣を更に身につけていきたいと思います。 実務での仮説活用は? 日々の業務では、課題解決と検証を繰り返しています。どんな難しい案件に直面しても、自分なりの仮説立案法や問題解決のアプローチについて、フリートークで意見交換ができれば、より一層の学びと成長につながると感じています。

データ・アナリティクス入門

共通認識で拓く学びの未来

理想と現実のズレは? 問題の特定手法には、理想の状態と現状のギャップを洗い出す方法と、ありたい姿と現状のギャップを明らかにする方法の2種類があると感じました。ネガティブな要素に目が向きやすい前者は、問題解決においてよく用いられます。しかし、一方で特に問題が認識されない場合、現状維持に陥り停滞を招く恐れもあります。後者の未来志向の在り方は、変化の速い現代において、より意識的に持つべき視点だと理解しました。 共通認識ってどう? ありたい姿は非常にあいまいな概念であるため、関係者間での認識を一致させる必要があるという点にも強く共感しました。そのため、データ分析を共通認識とし、フレームワークを活用して読み解くことが、皆が同じ言葉で議論を進めるための重要な手段となると考えます。これまで別々のロジックだと思っていたものが、密接に関連していることを実感できたのは、今回の学習の大きな収穫でした。 推進策はどう考える? また、私はダイバーシティ推進という、答えの出しづらい課題に取り組んでいます。問題の焦点が定まりにくく、方向性がぶれがちなことに悩んでいましたが、どちらの軸で取り組むかを再確認することで、ぶれがなくなったと感じています。さらに、データ分析や論理ツリー、その他のフレームワークを用いることで、説得力のある共通認識を形成し、場当たり的ではないロードマップを描くことが可能になりました。今後も学んだ手法に立ち返りながら、よりロジカルに推進策を検討していきたいと思います。

データ・アナリティクス入門

仮説思考で見つける学びの道

学びの目的は何? ライブ授業を受けて、これまでの学びを振り返ることができましたが、なお十分に理解しきれていない部分もあり、実際に活用するイメージがまだ明確ではないと感じました。特に、データ分析に着手する前に「目的」や「仮説」が重要であるという基本原則をしっかりと自分の中に落とし込み、何のために分析を行うのかを意識する必要があると思っています。 仮説検証の流れは? 分析のプロセスは、まず仮説を立て、それを検証するためにデータの収集や加工を行い、そこから新たな発見へと結びつける流れであることを再確認しました。データそのものが分析の起点になるのではなく、あくまで仮説を検証・裏付けるためのツールとして位置づけ、目的と手段が逆転しないように意識することが大切です。 仮説思考で解決? また、業務上で大量のデータ分析に直接接する機会がなくても、さまざまな場面で問題解決が求められることは事実です。こうした状況においては、仮説思考に基づいたアプローチで検証を進めることで、課題解決に向かう思考プロセスを常に意識する必要があると感じました。 思考プロセスを活かす? さらに、データアナリティクスの思考プロセスを基本に据え、テクニカルな側面に偏ることなく、仕事や日常の課題に取り組む際にもこのプロセスを意識することが重要だと思います。直接的な事例に触れる機会が少なくても、まずは解決すべき課題に向き合う際に、今回学んだ思考のプロセスを活かして取り組む姿勢が大切だと感じています。

データ・アナリティクス入門

分析で開く意思決定の未来

仮説検証の視覚化は? ライブ授業では、これまで学んできた課題の特定方法や仮説の設定、結果の検証といったプロセスを再確認することができました。特に、仮説検証の成果をどのように可視化するかについては、参加者の意見を聞く中で、棒グラフや円グラフ以外にも表現方法が存在することを知り、新たな視点を得ることができました。また、限られた分析時間の中で、本当に必要な分析を見極めることの重要性を改めて実感しました。データが手元にあると分析したくなりますが、何のために分析するのか、得られた結果をどう活用するのかを常に念頭に置いて進めるべきだと感じました。 分析目的と改善は? 講座を受講する前にデータ分析を学ぶ目的は「意思決定に活用するため」であり、その目的は6週間の学びを経ても変わっていません。授業内ではマーケティングに関する事例も取り上げられましたが、現業務において活かす機会は少ないと感じます。一方で、A/Bテストや4P分析は業務改善のための改善案策定に、また相関分析は将来の経費推計に役立つと考えています。 何かを決定する際は、まずデータ分析で解決可能かどうかを検討しています。その際、何のために分析を行うのか、何を明確にするのかを設定し、ただ単にエクセルでグラフを作成するのではなく、その手法が最適かどうかを熟慮することを習慣にしています。また、年1回の定例報告の場合、長年変わっていない報告形式も多いですが、可能な範囲でより伝わりやすい形式に改善していくことが重要だと感じています。

クリティカルシンキング入門

イシューを明確化して成果を最大化する技法

課題発見のための具体的手法は? 本質的な課題を発見するためには、対象を分解し問題点を明らかにし、その対策を検討することが重要です。その際、グラフなどを使用して問題点を的確にあぶり出すことが効果的です。手当たり次第に検討するのではなく、焦点を絞ることが求められます。 イシューの重要性を理解 イシューを明らかにし、常に意識することも重要です。打合せなどでは、まずイシューの共通認識を持つことが必要です。これは基本的なことですが、実践するのは難しいです。打合せの目的(イシュー)を共通認識として持つことが不可欠です。 業務を進める上でも、まず自分の中でイシューを明確にし、それを持ち続けることが大切です。必要に応じてイシューを修正する際も、その目的を明確に意識し続けます。 他社データの活用法とは? また、同業他社や好きな会社のデータを見て分析し、自分の仕事に活用することができます。考えるための題材は自分の仕事以外にもたくさんあり、例えば同業他社の有価証券報告書などからも情報を得ることができます。 打合せでは、その目的(イシュー)を最初にアジェンダに記載し、全員が共通の認識を持てるよう確認することが重要です。また、新聞や書籍などのグラフに注目し、その場合に適したグラフを選ぶ視点を持つことも有益です。 さらに、新聞記事や自分の業務を進める上で、常に目的やイシューを意識しながらメモを取ることが有効です。これにより、意識的に課題や解決策に集中することができます。

アカウンティング入門

数字の裏側で輝く経営戦略

利益の意味を探る? 利益という観点から考察する際に、5つの側面それぞれが持つ意味や違いについて理解を深めることができました。単に売上や費用といった数値を追うのではなく、顧客にどのような価値を提供しているかを分析する重要性を改めて実感しました。 数字で見える特徴? また、利益を軸としてその根底にある数字から事業の特徴を捉える方法は、非常に興味深いものでした。各数値の妥当性を検証するために、同業他社との比較を通じた客観的な視点が大切であると感じました。自社での状況と照らし合わせながら、数値の背後にある意味を具体的に想像することが、経営判断において重要なプロセスだと学びました。 環境要因で差が出る? さらに、顧客から実際にお金を支払ってもらえる基盤として、立地などの環境要因が果たす役割にも気付かされました。例えば、ある業態においては、単に基本的な品質や高級感を提供するだけでなく、特定の差別化要因を取り入れることで、付加価値を高めることが利益向上に繋がることが印象に残りました。 価格設定はどうすべき? また、売価設定の難しさについても考えさせられました。利益管理の観点から、どのような価格設定が適切なのか、その根拠となる数値をどのように仮定し、検証するのかが経営の一大課題であると感じました。さらに、業績連動型の制度を取り入れている企業において、どの指標を業績評価に用いるのか、そしてその理由を明確にすることで、組織全体の意識改革にもつながると考えています。

データ・アナリティクス入門

ひらめき!挑戦の軌跡

問題解決の狙いは? 問題の所在を明らかにするためには、セグメンテーションや条件分けが重要です。まずは層別分解に取り組み、プロセスのどこに弱点があるかを見極めることが求められます。こうすることで、解決策が散漫にならず、問題の本質にフォーカスできます。 仮説はどう洗い出す? 仮説の洗い出しは容易ではなく、思いついたことをそのまま書き連ねても網羅性が得られにくいという課題があります。そこで、まずは核となるアイデアを抽出し、それを一般化したうえで再び具体的な形に落とし込む方法が有効です。さらに、対となるカテゴリも設定することで、フレームワークを活用した仮説の構築が可能になります。 データ活用はどう進む? また、「データドリブン経営」の推進に向けては、必要な検討やデータ収集、分析、結果の共有が事業改善の鍵となります。基礎的な経営結果データを効率的に可視化し、顧客タッチ数などの経営結果を動かすドライバデータを補足することが大切です。これにより、どのような意思決定を行うか、またそれに必要なデータが何かを明確にすることが可能になります。 売上分析のポイントは? さらに、売上分析環境の構築にも注力する必要があります。たとえば、PowerBIを活用すれば、各メンバーが見たい切り口でデータを分析できる環境を整備できます。具体的には、商談数、顧客タッチ数、提案数、商談期間などのデータを取得し、可視化することで、より精度の高い意思決定を支える基盤が構築されます。

クリティカルシンキング入門

物事の本質を見抜く力を養う学びの旅

イシューをどう捉える? 物事の本質【イシュー】を正確に捉えることの重要性を学びました。 まず、イシューを正確に捉えることができないと、誤った提案をしてしまうリスクがあることを理解しました。そのため、イシューを特定する方法として「問いから始める」「問いを残す」「問いを共有する」というアプローチを学びました。 学びを実践するには? ここまでの学びの総決算として、WEEK1からWEEK4までの内容を実践しました。分解・分析を駆使して例題を解いていく中で、以下の点を意識しました。 資料作成時には「誰に何を伝えたいのか」を常に意識し、文面でも視覚でも効果的に伝えることを心がけました。 議論の進行をどう工夫する? ディスカッションでは、話が逸れやすいため、会話形式でも常にイシューを意識して取り組むようにしました。 実務上では、チャットアプリなどを用いたやり取りの中でも、イシューから逸れることなく、主語述語を意識して対応することに留意しました。 また、ディスカッション形式のやり取りの際には、必ず議事録を取り、文字起こしをすることで重要な情報を収集し、クリティカルに問題を見つけることを実践しました。 正確な提案をするために さらに、イシューの特定から着手することの重要性を認識しました。解決すべき課題を明確にすることで、適正な提案が可能となり、そのプロセスでは必ず自分一人で判断せず、同僚や上司にも報告・共有しながら進めていくことが大切だと学びました。

マーケティング入門

自分変わる瞬間がここにある

マーケティングの本質は? マーケティングには一つの決まった定義があるわけではなく、概念自体が多様です。しかし、存在するフレームワークを活用し、ターゲットにどのような価値を伝えるかを明確にすることが重要です。自社商品の魅力をしっかりと顧客に伝えることで、顧客がその魅力に引き込まれることが目指されています。 ターゲットは合っていますか? また、ターゲットと商品展開(つまり提案する価値)が整合しているかを慎重に考える必要があります。例えば、20代や30代の女性をターゲットにしている場合、新商品や広告、プロモーションが本当にその層に響く内容となっているかを見直し、市場調査や暮らし方の分析を通して顧客目線に立った提案が求められます。 共有認識はありますか? そのため、事業部のコンセプトを再確認し、①ターゲットと②提案する価値という軸を全社員で共有し、明確な方向性を言語化することが必要です。こうした共通認識をもとに、顧客に求められる商品や企業としてのプロモーション戦略をマーケティング理論に基づいて提案していくべきです。 データ活用はどうする? さらに、ターゲット顧客に価値を伝える際には、どのようなデータを活用すれば効果的か、またどのフレームワークが有効かという判断に迷いが生じることも現状の課題です。そこで、良い経験や失敗経験を他のメンバーと共有し、議題として議論することで、より効果的なマーケティング戦略の構築を目指したいと考えています。

戦略思考入門

学びと挑戦のリアル軌跡

目標は見えてる? 明確なゴール設定から始まり、現状とのギャップを分析し、そのギャップを埋めるための戦術―つまり、課題抽出とその解決策の策定―が重要であることを改めて認識しました。また、実行することとしないことをはっきりさせることも大切だと感じました。 戦略はどう進む? さらに、自社のビジネス戦略をブラッシュアップするため、学んだフレームワークを活用して、ビジネスインパクトを強化するアイデアを生み出すとともに、これまであまり議論されてこなかった将来の機会やリスクについてのインプットを行いました。これにより、自身の担当領域における中長期戦略の立案が一層具体性を増すこととなりました。 手順は具体的? 現在策定中の2025~2030年の人事戦略においては、以下の手順で戦略を完成させる予定です。まず、既に設定されたゴールをより明確に定義します。次に、そのゴールを達成するために必要な要素を具体的に列挙します。その中で、既に持っている強みと、今まだ不足している機会や弱みをファクトベースのデータ分析により整理します。そして、得られた情報からビジネスインパクトの大きい1~2の領域を選定し、それ以外のものは除外します。選んだ領域に関しては、その裏にある理由やギャップの本質的な課題を徹底的に分析し、解決策を策定します。 合意は取れてる? 最終的には、上司や同僚に戦略ドラフトを提示して議論を重ね、合意形成を図ることで、実効性のある戦略の実現を目指します。

「分析 × 課題」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right