戦略思考入門

実戦に活かす経済理論のヒント

学びはどこから来る? ビジネスを成功させるためには、人件費削減や生産性向上に加え、事業経済性について学ぶことが必要だと実感しました。特に、規模の経済性、習熟効果、範囲の経済性、ネットワーク経済性に関する理解が深まったことが印象的でした。総合演習では、ある企業を題材に、売上の分析や改善策、事業の多角化、宣伝、広告などについて考察し、理論の具体的な適用方法を探ることができました。 役割分担は見直せる? 自身の業界や自社に当てはめると、規模の経済性と範囲の経済性においてまだ改善の余地があると感じました。特に、各組織での役割分担が固定化している現状を変えるためには、上位概念を明確に示し、どの部署が何を担い、どこに責任があるのかを明確にする仕組みが求められると感じます。また、アウトプットの成果を正しく評価できる体制も必要だと実感しました。 改善策はどう探る? さらに、習熟効果に関しては、ノウハウのマニュアル化や知識の蓄積といった形式知の整備、さらにはAIの活用を通じた日々の改善が重要だと再認識しました。遅れを取るリスクを改めて認識し、今後の課題として取り組んでいきたいと感じています。 戦略はどう組み立つ? 自身の開発業務においては、ターゲットとする国や地域、対応する法規をグルーピングし、いかに規模の経済性を活かすかを検討する予定です。自社だけでなく、グループ会社や主要関連企業との整合性を十分に考慮し、事業全体としての経済効果を最大化する戦略を構築することが重要だと考えています。

データ・アナリティクス入門

数字とグラフで解くデータの真実

数値分析のコツは? データ分析を行う際、基本的には「数字で見る」、「グラフなどを用いて目で見る」、「数式で検証する」の三つの方法が考えられます。まず、数字で見る方法では、代表値を使って分析を進めますが、単純平均だけではデータのばらつきを十分に捉えられないため、加重平均や幾何平均、中央値、標準偏差なども併用する必要があると感じました。 視覚的解析はどう? 次に、グラフなどを使って視覚的にデータを確認する手法については、棒グラフや分布図などを活用し、データのばらつきや傾向を直感的に把握できる点が有効だと思います。数字での比較に加え、視覚的に情報を整理することで、人間の「感覚」を補助的な指標として利用することが可能となります。 財務分析を見極め? 特に財務分析などでは、年度ごとの数値を並べて差異を示す資料に留まることが多いですが、グラフを併用することで推移が一目で分かり、結論の共有も容易になります。しかし、誤った手法を用いると分析結果自体が誤解を招く危険性もあるため、注意が必要だと実感しました。 今後の改善点は? 今回の学習を通して、様々なアプローチでの分析の重要性や、人間の感覚も一つの有用な指標となり得ることを再確認しました。もし分析結果に疑義が生じた場合は、他の指標を用いて再度分析を試みるなど、工夫が求められると感じています。また、実際の業務においては標準偏差などがあまり用いられない現状もあり、各自の業務でどのような指標を適用するか、今後の課題として考えたいと思います。

マーケティング入門

受講生が伝える学びの軌跡

リサーチの必要性は? ある企業の開発事例から、まずリサーチ段階で潜在的なニーズを見つけることの重要性を学びました。真のニーズを引き出すためには、デプスインタビューやカスタマージャーニーの詳細な分析など、緻密な作業が必要であることが印象に残りました。 ニーズと強みはどう? 商品開発の段階では、潜在ニーズと自社の強みを掛け合わせることで相乗効果が期待できると感じました。同時に、消費者がどのようなブランドイメージを期待しているのかという視点を取り入れる必要があると気づかされました。特にネーミングに関しては、開発側が届けたいイメージよりも、消費者が直感的にイメージできる言葉が求められると考えました。 調査手法はどう? さらに、カスタマージャーニーのリサーチをより丁寧に行う必要性も感じました。過去のユーザーを数名ピックアップし、デプスインタビューを実施して真のニーズを明らかにすることや、業界サービスにおけるクライアントのペインポイントを探すことで他社との差別化を図ることが今後の課題です。 行動計画はどうする? 具体的なアクションプランとしては、まず過去ユーザーの中から年齢層や職種ごとに3名のデプスインタビューを設定し(初めは5名から8名程度に声をかける)、次にデプスインタビューを通して転職活動に至るまでの行動背景やペインポイントについて再調査を行います。さらに、登録者が約2000名いるインスタアカウントを活用してインスタライブを実施し、ユーザーの生の声を収集していく予定です。

クリティカルシンキング入門

検証×対話で織りなす学びの物語

仮説をどう検証? 今回の学習を通して、まず自分の感覚を「仮説」と捉え、「本当にそうなのか」「それだけなのか」という視点で検証する重要性を実感しました。検証の過程では、データ分析を行い、さらに他者とのディスカッションを通じて視点を広げ、再検証を繰り返すことでバイアスを減らす方法を学びました。また、数字だけを眺めるのではなく、複数の切り口からグラフ化することで、目的に応じた適切な表現ができるよう工夫する点も大切だと感じました。 資料作りはどう? さらに、スライド作成や提案の際には、情報を相手に伝えるための工夫も学びました。具体的には、現状の把握から始まり、論点を整理し、複数の選択肢(それぞれのメリット・デメリット)を明確に示すことで、推奨案を説得力ある形で提示する流れが有効であると理解しました。こうした手法を用いることで、伝えたい情報が整理され、受け取り手にとって分かりやすい資料が作り出せると感じました。 意見のバランスは? また、研修コンテンツ作成やディスカッションの場面では、課題の本質を見極め、相手の考えを理解しながら自分の意見とバランスを取ることが求められると学びました。実際の振り返りを通じて、実施後の客観的な意見を取り入れ、次に活かしていく姿勢の大切さも改めて認識できました。 挑戦に向けて? これらの学びを踏まえ、文章や資料、データ分析、そしてコミュニケーションといった各スキルを多角的に高めることが、今後の挑戦において重要であると感じています。

データ・アナリティクス入門

データ活用で未来を切り拓く

最終週の学びはどうだった? 今週は最終週ということもあり、講義を通じて現状把握からデータ分析までのプロセスを総合的に演習しました。どのような課題があるのか、またその課題を明確にするためにはどのようなデータを収集し、どのように見せるのが適切なのかについて学びました。 データは十分揃っている? しかし、その過程で実際に必要なデータが十分に集まるのかという疑問も浮かびました。現実には、分析に十分なデータが整っている状況はなかなか見受けられないことを実感しました。 どうやって改善するの? これからは常に課題解決の意識を持ち、どんなデータが必要なのかを考えながら業務に取り組んでいきたいと思います。分析以前の段階で、既にデータがあるものの活用されていなかったり、そもそも必要なデータが得られていないというケースも散見されるため、まずは現状のデータをしっかりと比較・検証し、仮説を立てた上で課題解決に向けた取り組みを進めることが大切だと感じました。 統計学の疑問は何? また、統計学的な観点についてもさらに学んでみたいと考えています。例えば、アンケート調査を実施した場合、何件の有効回答が集まれば信頼できるデータとみなせるのか、という点は特に興味深いです。ある評価指標が低い状態からわずかに上昇した場合、その変化が誤差の範囲内なのかどうか、母数に対してどの程度の割合であれば誤差として認識すべきかという具体的な例に基づき、より専門的なデータ分析について深掘りして学んでいきたいと感じました。

データ・アナリティクス入門

MECE思考で見える未来

情報で迷う理由は? データ分析の際、目についた情報に振り回され、時間がかかってしまうことや、都合の良い情報ばかりに頼って決め打ちになってしまう問題を感じています。そこで、MECEの考え方を取り入れることにしました。 MECEの切り口は? MECEには、全体を複数の部分に分ける層別分解と、全体を構成する変数に分ける変数分解という2つのアプローチがあります。たとえば、層別分解では年齢、季節、販売チャネルなどで分析し、変数分解では売上=客単価×客数や売上=商品単価×販売数のように捉えることができます。 分解できないのは? また、MECEに分解できない例として、モレなしでダブリがある、モレありでダブリがない、モレありでダブリもある場合が挙げられます。今後は、売上分析や業界、顧客分析、さらには業務の課題解決にもこの考え方を積極的に活用していきたいと考えています。 データ加工のポイントは? 現在、売上分析データを加工中であり、来週からはMECEの視点を取り入れたデータ加工を進める予定です。加えて、ロジックツリーを書き出すことで思考のスピードアップを図りながら、業務の課題解決に向けた取り組みも強化していきます。 情報取得の見直しは? 以前、情報の取得に時間がかかることや、都合の良い情報だけを集めて決め打ちしてしまう点に気がつきました。そのため、現在作成中のデータをもう一度フラットに俯瞰し、MECEを意識したフレームワークを使って再検討に努めています。

データ・アナリティクス入門

データ分析で未来を切り拓くために

データ分析の目的を見直す データ分析の手法として、データの収集、加工、そして発見に焦点が当たりがちですが、何のためにデータ分析を行うのか、その目的が最も重要だと認識しました。そのために必要なデータ項目を選定し、それに基づいてデータを収集する習慣や仕組みを作る必要があります。ただ業務をこなすだけでは、将来に向けた効果的な分析ができず、特に自社の業務データはインターネットで入手できないため、自社内での心がけが欠かせません。 本当の売上分析とは? 私の業務では、データを集計して資料に記載することで終わることが多く、本来の意味での分析に至っていないと感じました。自部門の売上高を集計することが多いのですが、他部門との比較を通じて本当の意味での売上分析を行う必要があり、もっとオープンな視点での比較を考える必要があります。また、落札情報などを蓄積し、市場の相場観も併せて分析することが求められています。 有用なデータの収集方法とは? 現在、社内では中期経営計画の策定時期が来ており、過去の売上や競合他社の状況、他部門との比較を行いながら、データ分析を活用したいと考えています。しかし、データが社内に散在しており、有用なデータが収集しにくいという課題があります。そのため、将来を見据えてどのようなデータが必要かを社内で議論し、データ分析がしっかりと根付く職場環境を作りたいと思います。データを蓄積するためのフォーマットを作成し、社内メンバーがそれを保管・活用できる仕組み作りも進めていきたいです。

リーダーシップ・キャリアビジョン入門

日々の気づきが魅せるリーダーの軌跡

リーダーの行動は何故模範なの? リーダーの行動は、誰もが真似ることができる行動であり、常に当たり前のことを当たり前に実施する姿勢が求められます。また、周囲には自分に従う人がいるか、あるいは自分が従いたいと思う人は誰なのかを意識することが大切です。そのためには、自身の行動を言語化し、具体的に整理することが不可欠となります。リーダーは行動で示す存在であり、そのためには必要なスキルと姿勢を備えることが重要です。 どうして行動観察が効果的? 日常の様々なシーンにおいて、リーダーの振る舞いは大きな意味を持ちます。たとえば、1対1の会話や相談への返答、チームメンバーにタスクやプロジェクトを任せる際の説明、さらには関係各所とのミーティングで皆が嫌がるような課題やタスクが議論に挙がった時、その場の対応や行動を観察することが挙げられます。さらに、顧客への営業活動やプレゼン、商談といった場面においても、リーダーとしてどのような行動をとるかを分析して学ぶことが必要です。 どう振り返れば成長する? また、1日の終わりに自身の行動を振り返る時間を持つことが重要です。今日の発言や振る舞いがメンバーや関係者にどのような影響を与えたのかを見直し、継続すべき行動とやめるべき行動を明確にすることが、次の日の改善につながります。同時に、他者の行動も振り返り、尊敬できる行動や真似したい振る舞い、または不適切だと感じた行動について検討することで、自分ならどう対応するべきかを考える良い機会となります。

戦略思考入門

IT企業向け経営戦略の新たな視点を学んで

差別化の新たな視点とは? これまで行ってきた「差別化の検討」では、「他社製品にはない新しい機能」や「他社サービスにはない新しいサービス」、「当社独自の技術やノウハウ」といった限定的な考え方しか持っていなかったことに気づいた。これらがあれば「IT企業としての差別化になる」と考えていたからだ。しかし、変化の激しい業界で継続的に自社の優位性を保つためには「VRIO」といった分析(評価)が必要であることや、ポーターの「3つの基本戦略」を知ることができて良かった。また、「差別化」を考えるのは難しいものであり、「集合知」や「外部の力」の活用、さらには「ライバルを意識し過ぎないこと」が大事だという話が印象的だった。 VRIOを人材戦略にどう活用? 次期中期経営計画において「VRIO」に当てはめて考えてみたいが、現段階では各要素に対するイメージが湧いておらず、自社の課題が膨らむばかりで途方もない感じがしている。そのため、時間がかかりそうだし、個人としても会社としても何か結論を出すのは相当難しい気がする。まずは、身近な領域として自部門の担当領域である人材採用戦略において「VRIO」を活用してみたい。 外部の力をどう取り入れる? 具体的には、自身と部員(採用担当)の考えを書き出し、「集合知」を活用する。また、親会社の採用活動を参考にし、自社に足りない部分(活動)を洗い出し、それらをどのように埋められるか(差をなくせるか/代替アクションがあるか)考えてみたい。これが「外部の力」の活用である。

データ・アナリティクス入門

仮説の問いで開く成長の扉

仮説をどう言語化する? データを見る前に「こうなりそう」と感じるのは、すでに仮説を持っている証拠だと感じます。経験や直感から「この傾向があるかも」と思うことが、後に重要な指標を絞り込むための手がかりとなります。そのため、仮説をしっかりと言語化し明示することはとても大切です。 仮説検証の効果は? 仮説が明確であれば、どの指標に重点的に注目すべきかが分かり、仮説が外れた場合でも「なぜ違ったのか?」という質問が自然に浮かび、スムーズに分析の焦点を絞ることができます。こうした仮説検証のサイクルを回すことこそが、データ分析の醍醐味であり、成果につながると考えています。 設備トラブルの影響は? 実際、稼働分析を日常的に行う中で、「おそらく設備トラブルの影響で停止が増えたのではないか」という仮説を立て、その検証に利用するデータを慎重に選定しながら、表面的な課題ではなく本質的な改善ポイントにたどり着こうとしています。 なぜをどう掘り下げる? また、分析業務において「なぜ?」と問いを繰り返すことを意識しているものの、これまで1~2回の掘り下げで思考を止め、表面的な原因に留まってしまうことが多かったと自覚しています。しかし、データ分析は正解のない問いに対して行うものであり、仮説や着眼点の精度が成果を大きく左右します。そのため、日常業務や分析の過程で「なぜを5回」繰り返すことを意識し、仮説が外れたときもすぐに切り替えず、なぜ違ったのかを徹底的に深掘りすることが重要だと感じています。

アカウンティング入門

数字で学ぶ!本気の経営戦略

利益と費用の違いは? カフェのケーススタディを通して、費用がP/Lのどの科目に該当するかや、売上総利益、営業利益、経常利益、税前当期純利益、当期純利益といった5つの利益の違いが明確になりました。 事業準備はどう進む? 事業を始める際は、まずどのようなコンセプトで展開するか、ターゲットとなる顧客を明確にすることが大切です。その上で、どんな準備を行い、どの程度の費用をかけるかというストーリーをしっかり作り込むことが、利益を生み出し事業継続に寄与するという視点を得ました。 価値本質はどう捉える? また、事業の価値の本質を見失わず、同業他社との比較を通じて自分の事業を客観的に把握することの重要性も感じました。これにより、コスト削減などの具体的な改善策を検討する必要性が理解できました。 施設比較はどんな結果? 今後のアプローチとしては、まず複数の施設がある場合、各施設のP/Lを並べて比較し、施設ごとの特徴を把握する方法を取ります。全体的な課題と各施設ごとの課題を抽出し、それぞれに対応するコスト削減案を策定することで、利益改善を目指していきたいと考えています。 どの課題に注目? 具体的には、先月の月次P/Lを確認し、赤字部門の課題を洗い出して対応策を講じるとともに、前年度同月との比較を行い、黒字部門でも利益が低下している理由を分析して改善策を考えました。これらの検討結果を基に、収支改善に向けた次月の行動計画を作成し、メンバーと共有の上、実際に動いていく所存です。

データ・アナリティクス入門

現状と理想のギャップを読み解く

現状と理想の違いは? 問題解決に取り組む際、まず現状(asis)と理想(tobe)のギャップを明確にすることが重要だと感じています。表面的に見える現象だけでなく、その背後にある根本原因を探ることで、対策すべき点を的確に把握できます。 分類基準は何? また、ロジックツリーやMECEの手法がよく話題に上りますが、どの要素を基に分類するかが肝心だと思います。実務で経験を積むことで、こうしたスキルをより一層進化させたいと考えています。 本当の課題は? クライアントの悩みを聴取する際には、単に表れる問題だけでなく、理想と現実のギャップやロジックツリーによる分解を用い、悩みの底にある本当の課題を見極めることが重要だと思います。 多角的切り口は? また、解説動画では「ヒト・モノ・カネ・情報」や「モノ・サービス・換金性のあるもの」など、さまざまな切り口での分析手法が提示されていました。こうした定石は業務において常に必要なものですので、しっかりと身につけたいと感じています。 原因分析の視点は? さらに、売上が落ちた際の原因分析として、季節ごとや販売チャネルごとといった視点が有用であることも学びました。こうした多角的なアプローチは、今後の業務において大いに役立つと実感しています。 多分野の学びは? 自分は特定の業界に特化していないため、さまざまな分野でどのような課題に取り組むのか、他の受講生や業界関係者と意見交換を重ねながら学んでいきたいと思います。
AIコーチング導線バナー

「分析 × 課題」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right