アカウンティング入門

数字で見える!経営の新たな視点

損益計算書の基本的な読み解き方を学ぶ 損益計算書の基本的な読み解き方を学び、これまでの『営業利益・利益率』だけでなく、経常利益や当期純利益なども比較しながら、会社経営全体の状況を理解することができました。 サプライヤ分析で何を理解する? この知識を活かして、業務上でサプライヤ分析を行いたいと考えています。具体的には、担当するサプライヤのP/L分析を通じて、事業構造をより深く理解していきます。分析においては、売上規模、営業利益、営業外利益・費用、経常利益、当期純利益といった項目ごとに詳細に読み解いていくつもりです。 数字から何を創造する? さらに、分析力を身につけることで、数字から事業の特徴や課題を創造できるようになりたいと考えています。競業他社や自社、さらにはサプライヤのP/Lを比較分析し、それぞれの特徴を把握することで、研究開発に力を入れているか、営業外費用がかかりすぎているかなどの仮説を立てる習慣をつけていきたいです。

クリティカルシンキング入門

仮説を超える確かな分析力

分析結果に対して疑問を持つ? 実践演習では、ある博物館のケースを題材に、大人の個人客の減少が主要な原因だと思い込んでいたところ、実際の分析で団体客も減少していることが分かりました。この結果から、すぐに決めつけるのではなく、細かい部分まで丁寧に検証する重要性を実感しました。さらに、グループワークでは参加者全員の意見を聞く中で、まずはどの数字や分析が必要かという全体の定義を明確にし、その上でどの切り口で数字を解釈していくかを考える大切さを改めて学びました。 業務での学びはどう活かす? また、日々の業務においても、単に数字を見るだけでなく、課題や要因についての分析を行う際は、まず切り口を考えた上で仮説を立てる方針を実践していきたいと思います。次に何かを考える際には、意識的に考えを文字に落とし込むことで、より明確なアプローチができると感じています。各自が行った企業分析を再度持ち寄るという方法も、さらなる学びの場として面白いと考えています。

アカウンティング入門

価値を紐解く、成長の秘密

どこに本質があるの? 大きな会社であっても、解像度を高めて見ることで、素人ながらも分析できるという点に感動しました。提供される価値によって財務諸表が変動するため、各企業の定性的な面を重視することが、会社の成長につながると気付かされました。また、数字に現れない「人的資本」についても、今後一層注目していきたいと考えています。 何をどう伝えるの? まず一つ目として、「提供価値や動機」と「行動・結果」を見る視点を、コーチングの場で活かしていければと思います。これにより、対象となる方々へより分かりやすく伝えることができ、変化のスピードも早まるのではないかと期待しています。 どの基本を押さえる? さらに、会計の基本思想をしっかりと身につけ、常に意識していくことで、より深い理解と実践につなげていきたいと考えています。 次は何を学ぶ? 最後に、皆さんは次にどのようなことを学びたいと考えているのか、ぜひお聞かせいただきたいです。

クリティカルシンキング入門

データ分析の新しい視点で業務改善へ

グラフを活用したデータ分析の重要性 分析においては、数字だけを見ずにグラフにするなど、視点を変えることが重要です。絶対値だけでなく比率などの相対値も分析し、複数の区切り方や切り口でデータを分解したうえで、それらを複合させて検討する必要があります。これらを怠ると、正しい課題や仮説にたどり着かない可能性が高くなります。 新たな視点の必要性とは? 私は、自身の業務において組織や顧客のデータから傾向や課題を分析する際に、複数の区切り方や切り口を見直していないことがあると感じています。そのため、これまでの区切り方や切り口以外に、何か新しい視点がないかを改めて考えてみたいと思います。 定例会議での効果的な課題分析法 現在、月に一度の定例会議で自社と取引先企業との間で課題の分析と対応策を議論しています。分析は自社で行うため、データの区切り方や切り口、グラフの見せ方を再検討し、仮説を誤らないように資料全体を見直すことが必要です。

クリティカルシンキング入門

多視点で見抜く真の課題

表面だけで見抜ける? 表面的な数字だけで判断すると、真の課題を見落とす恐れがあります。一つの切り口に固執せず、複数の視点から分析を行うことが重要です。また、分析を行う際は、分解方法がMECEになっているかどうかを意識し、層別分解、変数分解、プロセス分解などの手法を活用することが求められます。 多角分析は効果的? 例えば、管轄する組織の毎月の営業成績を分析する場合、Excel上の組織ごとの数字だけに目を向けるのではなく、様々な切り口や増減率といった要素を加えて事象全体を把握します。これにより、真の課題への特定がよりスムーズになるでしょう。 確認作業は万全? さらに、データ分析の際は、営業所、担当者、エリア、製品といった切り口がMECEになっているかを常に確認し、率などの加工を行うことで、現れている事象を正確に捉えることが大切です。第三者の視点によるチェックも忘れずに行い、より正確な分析を心がけることが必要です。

アカウンティング入門

数字で読み解く経営の裏側

P/L構成の意味は? P/Lの構成については理解していたものの、自社のP/Lを単に作成するだけでは、営業損益、経常損益、当期純利益それぞれがどのような理由でその数値になっているのか、十分に考察できていなかったことに気づきました。そこで、同業他社や他業種との比較、比率や過去の推移を分析することで、各損益数値が示す背景や原因、さらには対策まで具体的に検討できる力を身に付けたいと考えています。 計画策定はどう進める? また、経営陣や投資家に説明するための事業計画を策定する際には、単に「この計画になりました」と報告するのではなく、望むべき将来像を実現するためにどのようなマイルストーンを設定し、それに向けてどのような行動を取るべきかという視点を持ちたいと思います。 数値の背景は何? さらに、社内の研究部門や営業部門とのヒアリングを通して、予測される数値や決算数値の背景にある原因をしっかりと把握することも重要だと考えています。

データ・アナリティクス入門

復習と分析で磨く未来のスキル

授業で何が足りた? ライブ授業を通して、学んだ内容が実際には抜け落ちていると感じることがありました。日常にうまく落とし込めず、知識が血肉になっていないため、再度復習する必要性を強く感じています。一方で、学習初期から具体的な指針があったおかげで、課題に対して何をすべきかが明確になり、その成長を実感できた面もあります。 分析で自信は得られた? また、採用状況の分析は、初めから取り組んできたこともあり、これまでの経験が自信につながっています。繰り返し実践する中で、数字を扱う技術をさらに磨けると感じており、新たなデータにも積極的に取り組みたいと考えています。 異動後の数字はどう変わる? この春に異動があり、新しい職場でどのような数字に触れることになるのかはまだ不明ですが、現職場ではこれまでの分析手法がレガシーとして共有されています。新たな環境でも、数字を扱うスキルを引き続き活かし、積極的に取り組んでいきたいと思います。

アカウンティング入門

数字で読み解く価値のヒント

同業でも何が変わる? 同じ業種・業態であっても、提供する価値の違いによってP/Lの内容が変わることを、あるカフェの事例から実感しました。逆に、P/Lを見ることで、その企業がどのような価値を重視しているのかが読み取れる場合もあると感じました。 異なる業種の理解は? また、業種が異なる場合、P/Lの構造自体が全く異なる形となることを学びました。粗利や営業利益といった単一の利益指標のみで企業の収益性を評価するのは妥当ではなく、各業種で発生する費用の性質を考慮しながらP/Lを理解することが重要です。 採算改善の提案は? ① 既存や新規プロジェクトの採算を検討する際、他のプロジェクトのP/Lと比較することで、損益構造の違いを把握する。その違いが何に起因しているのかを考え、採算改善のための提案につなげる。 損益の違いは何? ② ③ 複数のプロジェクトのP/Lを比較して、それぞれの損益構造の違いを詳細に分析する.

クリティカルシンキング入門

数字の謎解きが開く成長の扉

目的は何だろう? 目的に応じて分析方法が変わるため、まず目的を明確にすることが重要だと感じています。数字の分解は、複数のパターンで行うことで真因を把握できるため、分解した結果を目的と照らし合わせながら検証していくことが必要です。また、漏れがないようにMECEの視点を取り入れたいと考えています。 営業戦略、どう立てる? 私は営業チームの責任者として、顧客や担当者による偏りが大きい現状を実感しています。顧客ごとにリピートの可能性、規模、件数、金額などが異なるため、今後の営業戦略に分析結果を活用していく予定です。加えて、顧客満足度の向上を目的に、アンケート調査も実施していくことにしました。 人間の役割は何? DXの進展により、AIやIoTの活用で効率化が進む一方で、最終的な分析や確認は人間が行う必要がある点も重視しています。どのようなシーンでこれらの取り組みが活用されるのか、皆さんの意見を聞いてみたいと思います。

データ・アナリティクス入門

数字で紡ぐ学びのストーリー

数字に基づく検証は? 分析は、ただの偶然や直感に頼るのではなく、数字の根拠をしっかりと確認した上でストーリーを構築することが大切です。まずは、何が言いたいのか、どこを重点的に見るべきかを整理し、その順序(What⇒Where⇒Why⇒How)に沿って傾向を明確にしていきます。 どんな原因が考えられる? また、考えられる原因を幅広く洗い出し、特に可能性が高い仮説についてはしっかりと検証する必要があります。平均値を見る際には、その数値のばらつきにも注意を払い、全体像を把握するよう努めます。 データの可視化はどう? さらに、データを視覚的に表現することは非常に効果的です。ヒストグラム、円グラフ、棒グラフなど、データの種類に応じて最適な図表を瞬時に選び出し、形にするスキルが求められます。数字だけのデータでは、何が言いたいのか、どこに課題があるのかを直感的に伝えることが難しいため、ビジュアル化が大きな武器となります。

データ・アナリティクス入門

代表値で読み解くデータの真実

どの代表値を選ぶ? 今週の学習では、さまざまな代表値について学びました。平均値には単純平均だけでなく、加重平均、幾何平均、中央値などがあり、分析の目的に応じた適切な選択が必要です。また、データのばらつきを示す標準偏差についても意識するようになりました。製造業の生産部門で用いられる3σなども、この標準偏差の考え方に基づいた手法です。どの指標が何を示すのかを常に意識しながら、代表値やグラフの適切な使用を心がけたいと思います。 単純平均の限界は? これまでのデータ分析では、主に単純平均を利用してきましたが、特異値が存在する場合には単純平均の使用が適さないことも認識していました。そのため、どの数字が最適なのかは必ずしも明確ではありませんでした。今回学んだ加重平均や幾何平均なども併せて活用し、より多角的な分析を進めていきたいと考えています。単純平均以外の代表値を使用する具体的なケースがあれば、ぜひ教えていただきたいです。

データ・アナリティクス入門

数字の裏に眠る真実を探る

定量分析の意義とは? 定量的に比較できる状態で物事を分析する大切さを実感しました。特に、MECEやロジックツリーといった手法は、情報を漏れや重複なく整理し、階層ごとに把握するのに非常に有用で、正確な分析の基盤となると学びました。 原因背後の要因は? また、従業員の不満などの現象が発生した際、単に直接的な原因と結びつけるのではなく、その背景にある複数の要因を整理することが重要だと考えるようになりました。こうしたアプローチは、複雑な要素が絡み合う状況において、分析の精度を高める上で大いに役立つと思います。 分析の共通点捉える? さらに、人に関する分析の場合も、複数の要素が関わるため、情報が見落とされたり重複したりする恐れがあります。そこで、今回学んだ手法を活用し、分析対象を構成する各要素に注目することで、一見異なる事象にも共通点を見いだしたり、特定の性質に偏っていることに気づけるよう努めたいと感じています。
AIコーチング導線バナー

「数字 × 分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right