アカウンティング入門

数字で解明!経営の未来を握るアカウンティングの力

アカウンティングの重要性とは? アカウンティングは、自社の経営が順調かどうかを数字で判断するために必要不可欠です。現在、私は特にB/S(貸借対照表)の理解が不足していると感じています。P/L(損益計算書)と組み合わせて、今の経営状態が十分であるのか、さらに改善が必要なのかを判断したいと考えています。 経営判断にどう活かす? 具体的には、税理士との話し合いの場での活用を考えています。また、日々の経営判断においては、新年度の給与賃金や役員賞与の決定に影響を与えることになります。今、私が最も重要だと考えている経営課題は、新規雇用に使える予算を具体的に把握することです。特に、遠方からの雇用に際し、住宅補助を提供できる経営状態にあるのか、それとも難しい状況なのかを、以前のように曖昧な方法ではなく、数字でしっかり理解しておきたいです。この点に関して、実際に書き出してみることで納得しました。 学んだ内容をどう活用する? 今後は、学んだ内容を自社の過去1-3期の決算書と照らし合わせながら具体的に分析を行い、すぐに経営判断に活かす必要があります。そのため、学んだことは可能な限り速やかに実践し、頭の中でイメージするだけでなく、実際に書き出してまとめるように心掛けます。

データ・アナリティクス入門

データで見える未来の仕事術

平均値を使う意味は? 平均値を中心に使っていたものの、実はその名称や意味を十分に理解できていなかったことに気付きました。加重平均や幾何平均も実は使ってはいたのですが、今回の学びで、自分の仕事の中で具体的にどう応用できるかをイメージすることができました。 散らばりはどう捉える? また、散らばりや標準偏差といった指標を通じて、データ比較のためにさまざまな基準があることが理解でき、非常に興味深かったです。普段はあまり使っていなかったヒストグラムも、実際に活用することで、案件のサイズがどこに集中しているかが一目で分かり、次の一手を考えるためのヒントになりそうです。 どの平均を選ぶ? さらに、加重平均は現状のデータ分析に役立ち、幾何平均は来年度の数字を検討する際に採用できそうだと感じています。標準偏差の活用法については、これから意識しながら幅広い視点で考えていく予定です。 実践で数字はどう変わる? 明日には、過去のデータをもとに加重平均、ヒストグラム、幾何平均の活用を実践し、特に幾何平均については過去数年分のデータを基に来年度の数字の妥当性を検証してみたいと思います。これまで漠然と感覚で判断していた数字が、しっかりとした目安となると確信しています。

アカウンティング入門

アカウンティング苦手でも大丈夫!学び直しの一歩

明確な目的を持つ理由とは? 森先生による1回目のライブ授業では、本講座を受講する際に明確な目的を持つことの重要性が強調されました。漠然と授業を受けるだけでは知識は身につかず、受講完了後の自分の姿をしっかりとイメージすることから始めるべきだとされました。私も他の受講生同様に、アカウンティングは言葉が難解で、数字に強くないと理解が難しいという固定概念を持っていました。しかし、この講座では構造と意味合いを理解することが目的であり、財務諸表に記載された内容を理解できることが求められるので、少し肩の荷が下りました。 経営報告会を活用するには? 社長が年に数回開催する経営状況の報告会では、アカウンティング情報を用いた説明が行われます。これまではその情報を深く理解することができずにいましたが、今後はそのような報告を理解し、さらに自ら分析して今後の経営計画を立てられるようになることが理想です。 学びを深めるための具体策 これを達成するために、まず過去の社長説明資料を確認し、直近の経営状況についても確認することから始めます。また、グループワークまでに森先生が紹介した書籍を購入して読み進め、その内容をグループワークで説明できるように準備します。

クリティカルシンキング入門

データの本質を引き出す視点の磨き方

データの解像度を上げるには? 目の前にあるデータを単に見るだけでなく、それを加工し、グラフなどで視覚化し、さまざまな切り口で分解することで、データの本質的な意味を理解することができると感じました。このように解像度を上げることで、データが持つ真の価値を引き出すことができます。ただし、自分にとって都合のいい結論に導くためだけに分解して終わらせず、他の切り口がないか、結果に漏れや重複がないかを常に疑う姿勢を持つことが重要です。 事業計画に活かすデータ分析 こうしたアプローチは、事業計画や月次報告などで数字を扱う際に特に効果的だと考えます。数字をただそのまま見るのではなく、複数の視点で分解することによってデータを正確に捉えることができ、その結果、本当の問題やボトルネックが浮き彫りになり、効果的な対策を講じることが可能になるでしょう。 新たな分析視点をどう加える? 事業計画の策定や月次報告の際には、以下の点を意識して取り組みたいと考えています。まず、数字を羅列するのではなく、視覚化して表現することで新たな気づきを得る。そして、これまでに使ったことのない新たな切り口を加えることにより、テンプレートにはない分析を行い、さらなる洞察を得ることを目指します。

クリティカルシンキング入門

客観的視点を磨く自己改革の旅

どうやって客観視する? 客観的に物事を考えるためには、「頭の使い方」が重要です。思いつきや経験、直感に頼りすぎると、制約や偏りが生じるため、主観を避け、客観的に考えるよう努めることが大切だと感じます。 データから何が見える? データを活用する際、グラフ化することでその威力がさらに増します。自分自身や相手に対して「目に仕事をさせる」ことが重要なポイントです。数字やデータの分析では、どこを切り取るかによって解釈が大きく変わるため、さまざまな角度から分解し、問題や解決策の解像度を高める必要があります。 課題はどう見極める? 現状を丁寧に分析・分解し、理想の姿を見据えること。今何を課題とすべきかを見極め、問いを残し、共有しながら進めることが大切です。データの分解や課題の見極め、共有は習慣化しようと思います。知識や経験が豊富であるほど、制約や偏りが生じていることを自覚し、あえて考え方や視点を変えて課題を見極めなければならないと感じます。 自分の変化に向き合う? これらを踏まえ、自分自身が変わらねばならない点に改めて気づきました。自己否定と自己改革の習慣を身につけることから始め、問題意識を持って積極的に問題に取り組んでいきたいと思っています。

クリティカルシンキング入門

データ分析で学ぶ!実践で磨く思考力

結論は本当に正しい? データを扱う際には、まず計算して情報を加工し、複数の視点から分解し、得られた結論が本当に正しいかどうかを疑うことが重要だと学びました。表や数字を眺めて悩むよりも、実際に手を動かして考える方が効果的であると感じています。 調査結果をどう見る? これからは、マーケティング調査の結果を見て、どのようなニーズが存在するのかを理解するために使おうと思っています。これまでは、マーケティング部から提供された考察を読み、データに違和感がなければ納得していました。しかし、今後は得られたデータを自分で加工および分解し、その上で考察してみようと思います。そして、共有された考察が本当に正しいのかについても疑いの目を持つことを心がけたいと思っています。 自分で検証してみる? 今後、調査結果が共有された際には、自分でもデータを一度加工・分解してみるようにします。MECE(Mutually Exclusive, Collectively Exhaustive)を意識しつつ、まずは手を動かして、加工や分解に慣れることを目標とします。そして、得られた考察には常に疑問を持ち、自分の意見を形成したら、他の人にもそれを共有するように心がけます。

データ・アナリティクス入門

問題解決の4ステップで見える未来

問題解決の切っ掛けは? 問題解決の4ステップを意識して取り組むことで、整理して分析できることが理解できました。普段、無意識に考えると、思考が散漫になり、思うような成果やアイデアが得られなくなることを実感しています。特に、「What(何が課題か)」をしっかり意識することで、その後の「Where(どこに問題があるか)」の分析が効果的になると感じ、今後もこの点を大切にしていきたいと思います。 次の対策はどうする? また、次の打ち手を検討する際には、あるべき姿(目標数)と現状(実績)を比較しながら、問題解決の4ステップを具体的に適用し、適切な対策を講じたいと考えています。これまでにも課題を見つけ対策を実施してきたものの、今後はさらに精緻な対策が立てられるよう努めたいと思います。 フレームワーク活用は? 次週からは、フレームワークの考え方を意識し、以下のステップを取り入れていきます。 ① 現状の数字を把握する ② MECEやロジックツリーを活用して整理する ③ What(何が課題か)を明確にする ④ Where(どこに問題があるか)を検討する ⑤ Why(なぜ起きているか)を分析する ⑥ How(どうするか)を具体化する

クリティカルシンキング入門

データから読み解く顧客満足度の秘密

数字の分析で気をつけるべき点は? 数字を使用して分析する際には、与えられた数字をただ羅列するのではなく、状況に応じて自分で欄を増やしたり工夫をすることが求められます。どのような傾向があるかを分解する際には、仮説を立てるために意味のある分け方をすることが重要です。その際には、情報が漏れたり重複したりしないように注意が必要です。また、ひとつの傾向が見えたとしても、2つ目、3つ目の異なる傾向が存在しないか考えることが大切です。 商談の不満点はどこに? お客様との商談において、どの部分に不満を抱いているのかを分析することに挑戦したいと思います。例えば、お客様に会う前の段階なのか、会った時なのか、などの具体的な場面を考えます。不満の傾向が明らかになった場合、法人であれば業種や従業員数、個人であれば家族構成や年齢など、さらに詳細に検討して仮説を立て、それを実践に移してみたいと考えています。 顧客分析はどう進める? まず、これまでにご契約いただいたお客様や断られたお客様がどのような方であるのかを表にまとめます。そして、ご契約いただいたお客様にはどのような共通の傾向があるのか、断られたお客様にはどのような特徴があるのかを分析してみるつもりです。

データ・アナリティクス入門

MECEで切り拓く!新たな論理学習

理想と現状の違いは? 問題解決では、まず理想の状態と現状のギャップを定量的に把握することが重要だと再認識しました。現状を正常な状態に戻す対策と、ありたい未来の実現に向けた解決策の2つの視点が必要であることを確認しました。 ロジックとMECEはどう? 今回の学習でロジックツリーとMECEの考え方について改めて学ぶ機会を得ました。これまで自己流になっていたロジックツリーを正しく再理解できたのは大変有意義でした。また、MECEの手法により、漏れや重複を防ぐことの大切さを実感しました。普段の業務では口頭だけで場合分けを行い、チーム内に認識のズレが生じることもあるため、今後はロジックツリーを活用し視覚的に共有するよう努めたいと思います。 分析の壁はどう? 一方、日常の業務においては、数字を追いかけ原因を探る分析作業が少ないため、新たに異動してくるメンバーが「分析」という言葉に戸惑うケースも見受けられます。演習問題の形式では対処できても、実際の業務課題にこの手法を効果的に結びつけるのは難しいかもしれません。そのため、全体像を把握しながら論理的思考を実践し、可能な限り定量化して原因を追究する問題解決のプロセスを指導していく必要性を感じました。

クリティカルシンキング入門

営業成績向上のカギはデータ分析!

--- 分析の重要性をどう捉える? 分かるということは、分けることです。ひとつの観点だけでなく、全体をざっくり分けてから更に分解していくことの大切さを学びました。例えば、単に率や平均の傾向が見えたとしても、他の視点から考慮する必要があります。これまで、分析の必要性や意味に疑問を抱き、実行をためらうことがありましたが、たとえ数字が出なくても、失敗したとしても、それ自体に価値があるという考え方を知ることができました。 リソース配分の最適化は可能? 営業所全体の新規顧客と既存顧客の比率と目標達成率を比較し、自身の数値と照らし合わせることで、異なる点を検討し、業績向上に繋げていきます。また、受注、失注、継続の際にどんな癖やパターンがあるかを分析し、既存と新規にどの程度リソースを割り当てる必要があるかを判断します。 振り返りを活かすには? 毎週の振り返り時には、他者と自身の数値を比較し、次週の行動指針を設定します。定量的に分析する習慣を身につけることで、説得力のあるトークができるようになることを目指しています。さらに、自身の営業活動において、どの局面で受注できているか、失注しているかを再確認し、改善点を見つけていきます。 ---

データ・アナリティクス入門

実績分析で気づく新たな視点

グラフを使い分けるには? データの多さや少なさを確認したいときは縦棒グラフ、比較を行いたいときは横棒グラフ、割合を示したい場合は円グラフを使うのが効果的です。用途に応じてこれらのグラフを使い分けることが重要です。目的を明確にした上で分析を行い、最終的に作成する資料が社内外のステークホルダーに感謝されるようなものになると理想的です。 どのグラフが最適ですか? たとえば、担当先ごとの売上や営業所間のメンバーの実績達成率を比較する際には横棒グラフが適しており、担当先のマーケットシェアを示したいときには円グラフが便利です。会議での効果的なアウトプットを意識して、適切なグラフを作成していくことが求められます。また、縦軸と横軸に何を選ぶかによってアウトプットの見方が変わることがあるので、様々な試行を行いたいと思います。 実績分析に時間を割くべき? 毎朝、実績を見る際に、自分だけでなく営業所メンバーの実績もExcelで分析しています。従来のやり方に加えて、グラフ作成にも挑戦しています。縦軸と横軸を従来とは異なる項目にしてみるなど、工夫を凝らしています。この作業にはかなりの時間を要するため、毎日1時間は数字分析の時間を確保しています。

データ・アナリティクス入門

ロジックツリーとMECEで整理する学びの極意

問題の実数把握の重要性を再認識 問題や現状を実数で把握することの重要性を再認識しました。現状の問題を理解した後、アイディアを整理する手法としてロジックツリーとMECEを学びました。以前からロジックツリーの存在は知っていましたが、2つの種類があることは新たな発見でした。また、MECEについては、社内での係数の分類方法を見ると、元々MECEを意識して分析目的で分類が形成されていると感じ、既存の分類の意義を再確認できました。 数字化の意識をどう高める? 現状や問題を日常的に数字にしていますが、今後はさらに意識的に行おうと思います。MECEについては、大項目で終わらせることがあるので、階層を意識する必要があると考えています。この分野において、AIも進化してきているので、検討するべき項目の洗い出しにおいて、効率的かつ網羅的であることを意識したいと思います。 ロジックツリーとAIの活用 問題の数字化や目標達成までの数字化、対策に対する数値的感覚の共有が重要です。ロジックツリーの階層を意識し、さらなる分類方法の可能性を追求し(「このポイントを分類する方法はあるか?」という問いを持つ)、AIを活用して網羅性の向上を効率化させたいと思います。

「数字 × 分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right