データ・アナリティクス入門

数字と論理で未来を切り拓く戦略

何が問題なの? 直面している課題や状況を整理する際、まずは「何が問題なのか」「どこに課題があるのか」「その原因は何か」をはっきりさせ、さらに原因に応じた有効な解決策を検討するプロセスの重要性を改めて実感しました。複数の切り口から状況を把握し、定性的な評価も加味しながら優先順位をつける方法は、日々の業務や計画作成にとても役立っています。 現状のギャップは? また、「あるべき姿」と「現状」とのギャップを定量的なデータで示すことで、問題の本質が明確になる点も印象的でした。具体的な数値やトレンド、ばらつきまで丁寧に分析することで、正しい状態へ戻すための対策が見えてくると感じました。こうした定量分析の視点は、実際の現場での判断材料として非常に有用です。 サンクコストは? さらに、サンクコストの考え方にも気づかされました。すでに支出してしまったコストに固執せず、未来のために合理的な判断を下すことが大切であるという点は、今後の意思決定に活かしていきたいと思います。 MECEの意味は? 最後に、MECE(もれなくダブりなく)を意識してロジックツリーを用いながら事象を整理する方法も、新たな視点として非常に学びになりました。事象を年齢や季節、販売数などさまざまな要素に分解し、全体像を捉える努力は、複雑な問題に対処する上で大いに役立つと感じています。 学びはどう活く? 以上の学びを踏まえ、①定量的データに基づく現状把握、②優先度や重要度を考慮した計画立案、③場面ごとのMECEの適用というプロセスを、今後の日々の業務に活かしていきたいと考えています。

クリティカルシンキング入門

切り口が変える数字の物語

数字の意味は何か? 数字が持つ意味をより深く理解するためには、まず情報を分解して、その解像度を上げることが重要です。一つの視点だけでなく、複数の切り口から現象を分析することで、より正確な現状把握に繋がります。 結論前の検証は? 具体的には、一つの傾向に満足するのではなく、さらに他の可能性を探る意識を持つことや、得られた分析結果からすぐに結論を出すのではなく「本当にそうなのか」を丁寧に検証する姿勢が求められます。また、頭で考えるだけでなく実際に手を動かし、様々な視点からデータを見直すプロセスも大切です。 MECE活用で分析は? さらに、分析を行う際にはMECEの考え方を取り入れることが有効です。具体的には、階層、変数、プロセスという視点から、物事を漏れなく、重複なく整理していく手法が挙げられます。たとえば、プログラムの参加者数の伸びを検討する場合、年齢だけでなく居住エリアや参加プログラムの種別といった観点から属性を分析することで、より多角的な理解が可能になります。 課題整理はどう進む? また、自身の業務上の課題を明確化するためにも、評価の視点が抜けや重複なく組み込まれるよう、MECEを活用して細分化し、その対応力を数値化する手法は効果的です。担当している事業プログラムの認知度についても、過去数年間のデータを大学別、学部別、学年別、応募種別などの切り口で集計し、グラフ化することで、現状と改善点を明確にできます。もし、最初の分析で十分な結論が得られなかった場合には、別の切り口から再度分析を行い、想定される課題について漏れや重複がないよう整理することが大切です。

データ・アナリティクス入門

数字で見える学びの未来

どうして視覚化すべき? 数字に集約することと、目で見て理解することの大切さを再確認しました。纏めたデータをグラフ化するなど視覚化することで、ヒストグラムなどを活用しながらデータのばらつきを直感的に把握できる点が印象的でした。 比較で何が見える? また、データ分析は「比較」に基づく作業であり、仮説思考が重要だと感じました。分析のプロセスでは、仮説を立て、異なる視点とアプローチを用いることによって、より本質に迫ることができると理解しています。 代表値はどう使う? 代表値の使い分けと散らばり(標準偏差)を組み合わせる方法も興味深かったです。平均値や中央値、加重平均、幾何平均など、用途に応じた手法があるため、Excelで計算できることから複雑な計算式を覚える必要はなく、実務で活用しやすい点が良いと感じました。 成約率との関係は? さらに、営業活動のように暴露機会と成約率、またユーザーの購買意欲と成約数との因果関係を数値化する場合、代表値だけでなく標準偏差による散らばりを検討することで、ユーザーの傾向をより正確に導き出すことができると考えています。まずは仮説思考から取り組む姿勢が大切だと再認識しました。 グラフの魅力は? 最後に、提供される表形式のデータを様々なグラフで可視化し、検証のヒントを得る点も魅力的です。従来の平均値や中央値に加えて、標準偏差などの散らばりを取り入れることで、ユーザーの購買情報をより明確に把握できる可能性が広がっています。定性情報をいかに数値化してデータ分析に活用するか、その工夫が今後の課題であり、挑戦してみたいと感じました。

クリティカルシンキング入門

データ分解で見える新視点の魅力

数字分析の本質は? 数字を分析するとき、一つの要素だけでなく、複数の要素を組み合わせて分解することで、新たな視点が得られることがわかりました。分解することで初めて見えるものがあり、実際にデータを操作してみることの重要性を感じました。エクセルで表をダウンロードし、関数や条件付き書式を使って分析することで、数字に隠れた情報も明らかになりました。また、どの要素をどのように分解すればどんな結果が出るのかを予測しながら作業することが、分析の精度向上に繋がると実感しました。 工数分析の効果は? 具体的には、コールセンターの効率化にこの分析手法を活用したいと思います。応答時間、後処理時間、入電内容、お客様の待ち時間などの観点から、それぞれの業務にかかる工数を数値化できます。これにより、どの業務に多くの工数を費やしているのかを可視化し、効率化の余地がある業務を特定することが可能です。 多角度分析のヒントは? さらに、コールセンターでは顧客から情報を得るだけでなく、それを様々な角度で分析して新たな顧客獲得のヒントを見つけることができると感じました。こうした情報は営業やマーケティング部門でも必要とされるでしょう。どんな情報が役立つかを部署間で話し合い、共有することが重要です。 新たな要素を探す? 今後、毎月集計しているお問い合わせ内容や顧客情報を新しい要素で分析してみたいと考えています。これまではカスタマーセンターの視点で集計を行っていましたが、マーケティング部門の視点でどのように数字を分解できるかを検討し、目的に応じた分析を進めていきたいと思います。

アカウンティング入門

5つの利益を直感的に理解する旅

P/Lの基本を理解するには? 損益計算書(P/L)の見方や5つの利益の関係について、講義を通して自社のP/Lを確認することで、大まかな理解が進み、頭の整理ができました。特に、大まかに要点を捉える方法が大変参考になりました。また、実践演習を通じて、5つの利益に繋がる具体的な構成要素についての理解を深めることができました。 営業利益を上げる方法とは? 特に、営業利益の数字を上げるために、安易にスタッフの削減などで販管費を下げるのではなく、week1で学んだ「顧客と提供価値」のコンセプトを意識し、顧客への提供価値の質を維持しつつ、全体を俯瞰しながら販管費を下げる方法を考えることが重要だと理解しました。 営業利益と当期純利益の要素は? 自社の損益計算書を確認し、営業利益や当期純利益に影響を与えている要素が何かを把握することが必要です。販管費や特別損失などの内容を財務諸表作成部署へ問い合わせ、その内容の妥当性を短期間で判断できるようになりたいと思います。 決算結果の推移をどう見る? また、半期決算の財務諸表を見ながら、5つの利益の対前期、対前年の結果がどう推移しているのか、その要因を具体的に特定し、即座に議論と改善策の検討ができるようにすることを目指しています。 財務諸表をどう活用する? 今後、他社の財務諸表を参照しつつ、5つの利益と各項目の意味を具体的にイメージしながら取り組んでいきたいです。「決算書「分析」超入門2024 100分でわかる!」を活用して、より実践的に理解し、活用できるように努力します。

アカウンティング入門

ターゲットを知ることで変わる未来

売上報告の数字は何を示す? ミノルとアキコのカフェはそれぞれ異なるターゲット層を想定しており、その特性を活かした戦略が売上に影響しています。売上報告書(PL)に表れる数字は、ただの数字以上の意味を持ちます。分析する際には、数字からどのような現象が起きているかを読み解く力が必要です。 どこにリソースを注力する? クライアントとのコンサルティング業務やデータ分析の提案では、ターゲット顧客のニーズを深く理解し、どこにリソースを集中させるべきかを考える力が重要になります。さらに、新しいサービスやプロジェクトを提案する際には、品質とコストのバランスを取ることの大切さを学びました。適切な投資を行うことで顧客満足度を高め、長期的な利益を追求する戦略を立てられるようになります。これらは、経営の意思決定やアドバイスを効果的に行う際にも役立ちます。 どこに価値を見出す? プロジェクトを始める際には、ターゲット顧客のニーズや好みを詳しく調査し、どこに価値を置くのかを明確にします。プロジェクトの初期段階で効果的な投資先を決定し、価値を最大化する要素に注力する計画を立てます。コスト面では、期待するリターンが高ければ単なるコスト削減ではなく、質を維持する選択も検討します。さらに、コスト分析とROI評価の機会を増やします。チームメンバー間でプロジェクトのコンセプトや提供価値を共有し、プロジェクト目標を一貫して実行できるようにします。クライアントや関係者に提案する際には、顧客体験を軸にした説得力のあるプレゼンテーションを作成し、付加価値を明確に示すことを心掛けます。

データ・アナリティクス入門

課題を分解!納得解決への道

課題の裏側は何? 課題に取り組む際は、各要素を因数分解し、ステップごとに整理することで納得感が高まると実感しています。今回の課題も、最初はアンケートによる満足度の低下に着目しましたが、さらに深堀りすることで、事業の柱である上級クラスの今後の採用方針まで課題が波及していることが見えてきました。目の前の問題を一気に解決しようとするのではなく、その課題から導かれる仮説をひとつずつ丁寧に検証し、対処していく姿勢を大切にしています。 分析の進め方はどう? また、業績に直結する数字の悪化など、すぐに解決できる施策を探すことに注力しがちですが、分析のステップをじっくり進めると、チームビルディングや個々の業務の進め方など、すぐには表面化しない根深い問題にも気づくことが多いと感じています。こうした課題に対して、全員が納得しながら解決に向けて取り組むためには、段階を追って問題解決を進めることが重要であり、わかりやすいアプローチが求められると感じました。 仮説の説明はどうなってる? 自分の考えた課題と、分析によって得られた仮説や解決策を順を追って説明することで、関係者にも理解しやすくなると考えています。また、一度に説明しても伝わりにくいため、各会議の場でテーマごとに議題として取り上げ、直接関係するメンバーに課題を提示するようにしています。例えば、ある会議では売上改善のための施策や単価、人数といった具体的な対策、さらにターゲットとすべき客層や現行の営業アプローチの方法など、段階的に議論を進めることで、最も効果的なアプローチを模索しています。

アカウンティング入門

数字が語る経営の秘密

授業でのB/S分析意義は? ライブ授業やグループワークで、ある企業のB/S分析に取り組みました。まず、授業では、企業が提供する価値(非日常体験やホスピタリティなど)を確認し、そこから生み出される売上項目(入場料、宿泊料金、飲食、グッズ、ロイヤリティなど)を整理しました。さらに、これらに伴う費用(売上原価)についても順を追って考えることで、抜け漏れを防ぐ手法を理解しました。一人ではなく、他者の意見を取り入れることで得られる学びの大きさを改めて実感するとともに、実際のB/Sの数字から、流動資産の現金が多い理由を納得することができました。自分が勤務する会社について、どのようなリスクマネジメントが行われているのか、また固定資産の減価償却や耐用年数についても関心が高まりました。たとえば、自社ビルの償却終了後の対応などを多角的に考える必要性を感じました。 設備投資戦略の秘密は? 勤務先の設備投資や固定資産戦略についても興味が湧き、資料を探したり担当者と話をする中で、自分の知見や考え方を広げたいと思うようになりました。また、他業種のビジネスにも関心があり、各企業の会計情報をまとめた書籍を購入して読むことで、日常のビジネスシーンに活かせる知識を得ています。 決算の背景を探る? さらに、企業会計に対する興味から、先日行われた大手自動車メーカーの決算発表を単に数字で捉えるのではなく、その背景や今後の展開について考察する機会となりました。この経験をもとに、自社や自身のビジネスの在り方を、情報を整理しながら自ら考えていこうとする意識が生まれました。

データ・アナリティクス入門

小さな気づきが未来を拓く

原因はどこにある? データ分析の各ステップを学んでいく中で、問題の原因を具体的に特定する段階に達しました。その過程では、確かに難しさも感じました。普段、何気なく行っている問題の究明はあいまいな部分があり、必ずしも分析に基づいて進められているわけではありません。たとえば、ある文書に対する口コミに関心を持っても、その口コミの年代や時期、男女比、キャンペーン実施の有無など、詳細な点には踏み込まない場合が多いと感じます。 どう試せばいい? また、動画でも示されていたように、このステップや手法に慣れるためには、身近な事例で実際に試してみることが不可欠です。うまくいかないときには、どの点をどのように改善すればよいかを考え、再度取り組むというプロセスを繰り返す必要があると実感しました。 適用例はどう考える? この手法は幅広い場面で活用できると思いますが、具体的な適用例をすぐにイメージするのは難しい面もあります。日常的には数字を扱っていますが、それらの数字から直接施策や解決策を導き出す機会が少ないため、意識があまり向かないのかもしれません。また、非常に困難な状況や緊急性の高い場面が少ないことも影響していると考えます。 改善の実現方法は? 現職は大きな問題がないため安定しているものの、逆に「こうなればもっと良くなるかもしれない」という改善点に積極的に取り組めていない部分も多くあります。問題と捉えるというよりは、今後の課題として「どのようにすればさらに良い状態になるか」を洗い出し、身近に改善すべき対象を見つけていきたいと考えています。

アカウンティング入門

数字の裏側に隠された学び

売上と営業利益はどう? 売上高は企業の事業規模を示す指標であり、数字が大きいほど事業の規模が広いと理解できます。また、営業利益までの項目は本業における収益と費用を反映しており、本業でどれだけの利益を上げているかを把握できることがわかります。 経常利益はどう捉える? 経常利益は、主に財務活動に起因する本業外の収益や費用を含み、継続的な利益獲得の見込みを判断するための重要な指標となります。それ以降の項目では、税金等調整前当期純利益、当期純利益、親会社株主に帰属する当期純利益といった形で、最終的な利益状況が表現されています。 P/Lの見方は? P/Lを読み解く際には、まず売上高、営業利益、経常利益、当期純利益といった大きな数字に注目し、事業全体の概況を把握することが基本です。さらに、各項目の推移や数値の比較・対比を行うことで、傾向の変化や大きな相違点を見出すことが重要です。 競合との違いは? 現在のプロジェクトでは、競合他社と自社との比較・対比分析にP/Lを活用したいと考えています。特に、競合の過去数年にわたるPLの傾向を分析し、どの項目に費用をかけて利益を生み出しているかを抽出することで、自社との違いを明確にしたいと考えています。 効率はどう高める? また、5月末に予定している社内プロジェクトの中間報告会に向け、Q2の情報を盛り込んだ報告内容を準備中です。このため、分析は自分一人で進めるのではなく、ChatGPTやCopilotといったツールを活用し、業務効率を高めながら取り組む方法を模索しています。

クリティカルシンキング入門

分解で見える本質への道

データ分解の意味は? データを多角的に捉えるための分解フレームワークを学びました。このフレームワークでは、①分け方を工夫する、②切り口を変えて考える、③複数の切り口を用いる、④導いた仮説が正しいか自問する、といった思考スキルを活用します。こうした手法により、データを正しく理解し、課題解決へとつなげることが可能になります。また、切り口を検討する際は、目的に沿ってMECEの原則を意識することが重要です。 顧客インサイトはどう? 現在、タスクチームで顧客インサイトに基づくConfidence活動を担当しています。顧客インサイトは、顧客ニーズの特定や戦略策定において重要な情報資源ですが、膨大なデータと多岐にわたる内容により、情報の整理や可視化に課題を感じています。さらに、目の前の数字や表にとらわれがちで、「そのデータから何を導き出すか」という視点が薄れることで、本質的な課題に辿り着けない可能性もあります。 分解スキルの使い方は? そこで、今回Week2で学んだ「分解」のスキルを活用し、データ分析に対する心理的ハードルを下げたいと考えています。まずは来月の顧客インサイト分析資料作成に向け、手を動かしてデータを分解することから始めます。その上で、目的に沿った複数の切り口を検討しながら、自分自身で問いを立て、データを深掘りしていきます。表やグラフなども試行し、情報をいかに伝えやすくするか工夫していきます。最終的には、使用した分析手法と見えてきた課題、そこから導かれる解決策を、チームメンバーに分かりやすく説明できるよう整理するつもりです。

データ・アナリティクス入門

データ分析で学ぶ効果的な解決策の作り方

比較方法って何だろ? 「比較」の方法には、代表値を使って比べる方法や、グラフなどで視覚的に情報を整理して見比べる方法があります。 目的は明確か? 定量分析の中で最も重要なのは、まず目的や問いを明確にすることです。目的達成に関連する要素を考えて仮説を立て、その仮説を検証するために必要なデータを集めます。そのデータを基に、インパクトやギャップ、トレンド、ばらつき、パターンといった視点から分析を行います。 手法はどう? 分析のアプローチにはさまざまな手法があります。例えば、ギャップを示すには横棒グラフを、トレンドを示すには折れ線グラフを、分布を示すにはヒストグラムや円グラフを、パターンを示すには散布図を用います。また、数字としては単純平均や加重平均、幾何平均、中央値を用います。データの散らばりを見る際には、分散や標準偏差を参照します。回帰分析やモデル化を用いることで、データの関係性を数式化することも可能です。 因果はどう考える? 重要なのは、相関と因果を混同しないことで、データに基づく正確な分析を行うことです。学校の成績向上や遅刻削減、大学進学実績向上といった課題も、思い込みではなくデータを活用することで、より効果的かつ効率的に解決策を見つけられます。教育関連の文献やデータから情報を読み解く能力を養い、勤務先の学校の課題に対してロジックツリーを用い、仮説を立て、データを集めてグラフ化し、仮説を検証していくことが求められます。特に、度数分布と散布図は非常に有用ですので、積極的に活用していきたいと思います。

「数字 × 分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right