データ・アナリティクス入門

理想と現実、ギャップを超える力

合意形成はどう進める? 問題解決に取り組む際は、まず「理想のあるべき姿」と現状とのギャップを整理することが重要です。表面的に見つかった問題をそのまま解決していくのは、時には運に任せる側面があり、必ずしも大きな影響を与える要因とはなりません。そのため、まずは現場の関係者と「理想のあるべき姿」についてしっかりと合意形成を図ります。もし現場側に理想がなければ、関係者と共に理想の策定に取り組む必要があります。 目標設定は本当に明確? 自身の業務においては、現場で設定される各部門の達成目標=理想を出発点とし、そこから現状とのギャップを明確に報告する役割があります。しかし、現実には現場で理想が設定されていなかったり、目標が曖昧である場合が多く、部署として理想について十分に把握できず、ギャップを正確に報告できていない現状があります。 理想共有はどうやる? このため、まず現場の「理想」を共有し、正確に把握することが重要です。もし、現場側で理想が不明確であれば、定量的な目標の設定を提案し、協力して策定することが必要です。次に、現場の理想と実際の状況との間に存在するギャップをしっかりと報告するステップに移ります。 連携で成果は得られる? 以上のプロセスを実践することで、現場と部署が連携し、理想に近づくための効果的な問題解決が進むと感じています。

マーケティング入門

顧客志向が生む革新の一歩

顧客志向は何が鍵? マーケティングは、市場調査や分析、販売活動などの個々の作業に分割するのではなく、すべてのプロセスを連続した「買ってもらえる仕組み」として捉えることが重要だと学びました。その中で、特に「顧客志向」が最も大切だと感じます。自分たちが提供できる価値だけに目を向けるのではなく、顧客の本当のニーズを正確に把握し、それに応じた独自の付加価値を効果的に提供するビジネスモデルを構築することが求められています。 医薬の改善策は? 一方、製薬業界では、治療薬が存在しない疾患や領域に画期的な薬を届けるだけでなく、既存の治療薬でも副作用や服薬のハードルといった問題がある場合には、改善を図る「マイナーチェンジ」のようなアプローチが必要とされています。現状の課題からニーズを掴み、それに応じた付加価値のある薬剤を提供するというマーケティング思考を、今後のビジネスモデルの立案で生かしたいと考えています。 利益の違いは何? また、「顧客満足に基づく利益」と「売上数量に基づく利益」の違いについては、ある程度のイメージは持っているものの、具体的な違いを説明するのは難しいと感じています。一般的には、「顧客満足が高いと売上が伸びる」という因果関係は成り立つものの、売上が大きいだけでは必ずしも顧客満足が高いとは言えない、という理解でよいのでしょうか。

デザイン思考入門

AIが切り拓く試作スピード革命

不確実性はどこに? 試作の方法によって得られるフィードバックの性質が異なる点は非常に重要だと感じました。どの試作を採用するかという議論に陥りがちですが、その前にまず、どの部分に不確実性があるのかを明確にし、その不確実性を早期に確認するために、どの試作をどの順序で使うべきかを検討する必要があると思います。 AI導入は効果的? また、AIを活用してWebアプリのプロトタイプを作成したところ、パワーポイントの説明資料以上に多くの反応をもらうことができました。以前は、静的HTMLのプロトタイプを作るだけでも1ヶ月程度かかり、動的に変化するシステムではさらに長い期間が必要でした。しかし、AIの導入により、1日から数日でプロトタイプを完成させることが可能となりました。得られるフィードバックの質や量の面からも、AIを活用したシステムのプロトタイプ作成は不可欠だと実感しました。 次回の方向性は? 現在進行中のプロジェクトでは、人力でプロトタイプを作成していますが、個人的にもAIを活用してプロトタイプを作る検討を進めています。まだ途中段階ではありますが、現状のAI技術でどこまで要件を反映したプロトタイプが作成できるのかを確認し、十分な要件が盛り込めることが確認できれば、次回以降のプロジェクトではAIを前提としたアプローチを採用したいと考えています。

データ・アナリティクス入門

複数仮説で切り開く学びの道

仮説はどう組み立てる? 仮説を考える際、3Cや4Pなどのフレームワークを活用することで、複数の仮説を網羅的に立てる手法に改めて気づかされました。これまでマーケティングのツールとしてしか意識していなかった考え方も、整理のための有効な手段となることを実感しました。 日常業務で仮説考察は? また、日々の業務の中で仮説を考え続けることにより、自分自身の業務への向き合い方を変えていきたいと考えています。 新サービスの評価はどう? 新サービスの提供時には、仮説を一つだけ立てた結果、分析や報告の内容が浅くなってしまい、納得感に欠ける部分があったと感じました。頭の中にはもっと考慮すべき点があったにもかかわらず、十分に明文化できなかったため、結果として不十分なものになってしまいました。 再挑戦の決意は? この現状を踏まえて、改めて複数の仮説を考え直し、分析と報告を再度やり直す方向で進めていこうと考えています。 案件分析の進め方は? 現在、2件の案件で分析が必要とされています。1件目は、半年前に提供したサービスの展開状況と今後の展開について、2件目は1年前に想定したサービス利用状況を再度確認する業務です。各案件とも、現状のデータを収集し、フレームワークを用いて仮説を立て、過去の想定と現状との違いを明確にする形で分析を実施する予定です。

クリティカルシンキング入門

データが導く採用成功法則

いつデータは成果に? 十分なデータを蓄積することが、正確な現状把握と適切な問いの設定につながるという点が非常に印象的でした。日々あらゆるデータを収集し、いつ何に対して答えを出すべきかを意識することが問題解決の基本であると再認識しました。 ROI考慮の意義は? また、解決策を検討する際には、ただ増やすのではなく費用対効果(ROI)も十分に考慮すべきだという点も学びました。特定の業務を増やすことがオペレーションコストの増加や問題の複雑化につながることがあるため、必要に応じて削減する視点も取り入れることが大切だと感じます。さまざまな角度から分析することで、より有効な対策を講じる可能性が広がるとも思います。 採用戦略の真髄は? 私の会社では現在、採用活動の強化に取り組んでおります。今回学んだ内容は、採用数の増加に向けた戦略に役立つと感じました。例えば、時期別の応募者数を分析し、各流入経路の割合からボトルネックを明確にすることで、仮説に基づいた具体的な対策を講じ、採用数の向上を目指したいと考えています。 PDCAで何が変わる? この学びを整理した上で、抽象度の高い問題解決が求められる業務にも積極的に挑戦していきたいです。PDCAサイクルを何度も回すことで、立てる問いの質が向上し、より良い成果につながると信じています。

リーダーシップ・キャリアビジョン入門

挑戦に応える、リーダーの軌跡

リーダー像はどう整理? 改めて自分が目指すリーダー像を整理することが、学びを深める上で非常に効果的だと実感しました。リーダーとは、不確かな領域に果敢に挑戦し、現状を大きく変革すると同時に、新たな価値を創出していく存在です。変化の激しい時代に的確に対応し、フォロワーとともに実現したい夢へ向かって進むという姿勢を、自身の目標として掲げています。具体的な取り組みとしては、人口減少対策のプロジェクトの進捗を踏まえ、明確な目標を設定し、週に一度、目標に対する達成度を自己内省する時間を確保する計画です。 市町村との連携はどう捉える? また、管内の市町村と共に進める人口減少対策において、新たな気づきを得ました。12月から開始を予定していた「子育て支援の広域連携」という観点から市町村との打ち合わせを行ったところ、反対意見が出る一方で、私の呼びかけに好意的に反応してくれる市町村もありました。中には、全員が若い職員で、斬新なアイデアを提案したいという意欲的な意見もありました。こうした反応は、私が提案したリーダーシップに関するビジョンに共感し、自ら進んで関わってくれるフォロワーの存在を示していると感じました。上下関係があるわけではありませんが、共に取り組むステークホルダーに対しても、リーダーシップを発揮することで、チーム作りがより円滑に進むと実感しました。

戦略思考入門

実態把握が生む経済戦略のヒント

なぜ実態把握が大切? 規模の経済について学んだ中で、単純に大量生産して稼動率を上げるだけでは十分ではなく、まず自社の実態を正確に把握し、整理することの重要性を再認識しました。 他社状況はどう把握? また、規模の不経済に関しては、依頼先や先方の状況、さらには各社の資産状況や稼動状況をしっかり把握した上で検討する必要があると感じました。 資源活用の秘訣は? さらに、現有資源の他分野への有効活用や、範囲の経済の視点から関連部分を抽出するなど、柔軟な視点をもって検討を進めることが求められます。 部品流用はどう見る? 商品開発においては、コストが最重要項目であるため、同一の部品や仕組みの流用可能性を考えることが大切です。しかし、単にコスト面だけに目を向けるのではなく、そうした流用が商品の価値や魅力にどのような影響を与えるかも同時に検討しなければなりません。 整合性はどう保つ? 各商品の検討では、自分の担当業務だけでなく、関連部分との整合性を確認しながら、最も適した手法を選ぶことが必要です。1つの部品においても、現状の位置づけを把握し、再利用すべきかどうか、または何を第一優先にするかを定量的に判断することが重要だと考えます。 実例はどう参考? 皆様が実際に体験された事例があれば、ぜひ参考にさせていただきたく思います。

データ・アナリティクス入門

仮説が導く実践の分析術

目的設定は正しい? データ分析は、単に比較するだけではなく、まず目的を明確にし、自分なりに仮説を立てるところから始まります。仮説に基づいて分析作業を進め、その結果から具体的な示唆を得る一連の流れを意識することが重要です。 比較条件は合ってる? また、比較対象とする対象の条件を揃えることが不可欠です。この前提が誤っていると、適切な分析が行えなくなるため、比較対象に問題がないかどうかも注意深く判断する必要があります。 採用現場でどう役立つ? 採用活動の現場では、以下のような場面でデータ分析が役立つと考えています。まず、エージェントや媒体の成果を基にした母集団の形成。次に、面接の実施率や内定承諾率など、候補者起因の歩留まり改善。そして自社の採用活動全体のパフォーマンス管理や改善点の発見、さらには新たなサービス導入の検討時にも活用できるでしょう。 集計方法に再考は? 現状、応募数や内定数など各選考フェーズでの実数や展開率の集計は行っていますが、そのデータの取り方が最適かどうか、また他により良い集計方法がないか再検討する余地があると感じています。さらに、定量的な成果を示すことで、他部門への説得材料とする狙いもあり、現状の課題、例えば選考のリードタイムの短縮などについて具体的に提示し、改善に向けた会議を進めていきたいと考えています。

データ・アナリティクス入門

問題解決への新しいアプローチを発見

問題解決の第一歩はどこ? 問題解決の4つのプロセスを学びました。起きたことをwhat・where・why・howに分けて考えると、普段ではwhereやwhyについては何となく意識しているものの、その「何となく」から思いつきでhowに至ってしまうことが多いと感じました。whatについてはほとんど考えられていないように思います。また、現状とあるべき姿のギャップを言葉にしようとしても、うまく出てこないことに気づかされました。これは自分がいかに漠然とした考えで問題に向き合っていたかの証拠だと感じました。 定量的分析を習慣化すべき? 目の前のことに一喜一憂せず、日々の問題には定量的な分析を行うことを習慣づけたいと思います。たとえば、キャンペーンの商品分析やチームメンバーの業務量の適正化なども、定量的に分解して考えると有効です。私たちの基本業務である当事者トラブルの解決にも、この方法が応用できるかもしれません。 ギャップをどう埋める? 最初に取り組むべきは、現状とあるべき姿、またはありたい姿が個々人で漠然としてまとまっていない点の改善です。そのギャップを埋めることが大切です。問題解決の話し合いの場ではまずwhatを意識し、周囲との合意を図ることが重要です。ここを丁寧に行った後に、物事の分解・整理を学んだ通りに進めていきたいと思います。

データ・アナリティクス入門

ありたい自分に出会う学び

どんな人物を目指す? まず、自分が何を学ぶかという内容よりも、どのような人物になりたいか、その「ありたい姿」を明確に描くことの大切さを改めて実感しました。講座を進める中で、演習に没頭していた自分がいましたが、その過程で「ありたい姿」に向けては、学習習慣を確立しながら、同時にコンセプチュアル・スキルを身につける必要性を感じるようになりました。 どんな体験を届ける? また、ただ単に数値を改善するのではなく、ユーザーにどのような体験を届けたいのかという「ありたい姿」から物事をスタートすることで、ぶれのない方向性が保てると感じました。具体的には、何をいつまでに行うかという計画だけでなく、チーム全体で「私たちはどのような存在になりたいか」を共有し、そのビジョンに基づいて戦略を立てることで、メンバーの主体性が高まり、プロジェクトがスムーズに進行することを学びました。 なぜ数字が気になる? さらに、データに注目する際は「なぜこの数字になったのか」という仮説を立て、チーム内で共有することの重要性を知りました。月初には、プロジェクトを通じた「ありたい姿」を簡潔に1~2行でまとめ、企画立案や施策レビューの際には、3Cや4Pなどのフレームワークを活用して情報を構造化することで、現状のチェックと翌月に意識すべきスキルの選定が可能になると感じています.

データ・アナリティクス入門

数値と論理で見える理想の未来

どの方法で解決? 問題解決には大きく2つのアプローチがあると感じています。1つは、あるべき姿と現状のギャップを埋め、正しい状況に戻すための方法です。もう1つは、未来に向けたありたい姿と現状のギャップを解消し、望む状態に到達するための方法です。どちらの場合も、目指す状態と現状を定量的に示すことが非常に重要です。 分析手法は何? そのため、ロジックツリーやMECEといった分析手法が有効だと考えています。これらのツールを使うことで、問題やデータを細かく分解し、整理された形で把握することが可能になります。 顧客データ整理はどう進む? 具体的には、現在保有している顧客データに含まれる情報を、国や契約の条件などの観点から整理する必要があります。これまで「顧客データ」とひとまとめにされていた部分を、ロジックツリーを用いて項目ごとに分解し、各顧客についてどのような情報が含まれているのかを明確にすることが求められます。また、業務における理想の状態と現状のギャップについても、数値などの定量的な指標を用いて示すことが大切だと感じました。 手法活用の可能性は? このように、定量的な情報の整理と、体系的な分析手法の活用が、問題解決を実現する上で不可欠であると再認識しました。今後も、これらの手法を業務の改善に積極的に取り入れていきたいと思います。

戦略思考入門

生産性向上のための取捨選択の極意

事実と推計の評価は? 取捨選択を考える際は、多角的に評価することが重要であり、それに対する重みづけも大切です。評価を行う際には、実際の事実を集めることが最も効果的ですが、信頼できる推計を利用することも有効な手段です。経験を積むことで、適切な生産性の判断ができるようになりたいと考えています。また、定量的な視点に限定されず、経緯など定性的な視点からの補足も有効です。捨てるためには、事前の準備が重要であると感じました。最終的には「判断」であり、学びをいかに使いこなすかは自分次第です。 不要業務の見極めは? 我々の組織においては、「やらなくていいこと」はあまり多くないと気付かされました。つまり、IT部門が行わず他部署や社外に引き渡すことが「やらなくていいこと」に該当すると考えられます。突発案件も含め、必要に応じて業務を放棄するという選択肢を用いて、現場の負荷を一定範囲内でコントロールしたいと思います。 優先順位はどう決める? 業務の優先順位を評価するために、いくつかの基準を定めることが必要です。まず、現状の業務を重要性、領域、役割などで大まかに層別します。そして、層別したグループごとに評価し、優先順位をつけます。この際、優先度の低いグループについては、廃止やアウトソース、他部署への引き渡しといった方針を立てておくことも考えに入れます。
AIコーチング導線バナー

「現状」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right