データ・アナリティクス入門

ロジックツリーで解決策が見えた!

問題解決の基本ステップは? 問題解決は段階的に考えることが重要です。まずは「What」として、何が問題なのかを明確にし、あるべき姿と現状を把握し、これについて周囲と合意を取ります。「Where」では問題がどこにあるのかを特定し、「Why」ではなぜその問題が起きているのかを分析します。そして「How」では、問題をどのように解決するかを考えます。 ロジックツリーで何が変わる? ロジックツリー(MECE:もれなく・だぶりなく)は、問題を解決する際のWhere、Why、Howの各段階で有効に活用できることがわかりました。これを様々なシーンで使えるように、もっと積極的に取り入れていきたいと考えています。 問題をどう分解するか? 問題を分解する方法には、層別分解と変数分解(掛け算)の2つがあります。これまで意識して使っていなかったので、状況に応じてこれらの方法をうまく引き出せるようにしたいです。 共通認識をどう持つ? 計画やあるべき姿が明示されていないケースが多くあります。このため、まずロジックツリーを使って問題を以下のように切り分け、可視化し共通認識を持つことが大切です。解決策を提案する際にも、すぐに実現可能なことだけでなく、様々な解決案を考慮し、長期的に良い方向に進むための基礎となる資料を作成していきたいです。 MECEをどう活用する? また、数値データでない分析においてはMECEを意識し、作業に取り掛かる前にWhatやWhereに時間をかけることが重要です。変数分解も選択肢として考慮し、「分析の本質は比較であり、意思決定のためのものである」という点を忘れずに実践していきます。今後は部下に教えることも視野に入れ、データを整理しながら作業するように心がけたいと思います。

クリティカルシンキング入門

批判的思考で深める分析術

本当に合っているか? 大前提として、「その答えは本当に正しいのか?」と自分自身に問いかけ、批判的に考えることが重要です。以下の手法を活用していきたいと思います。 整理のポイントは? まず、データを視覚的に整理し、合計や割合、昇順下降順で加工することで視覚的に情報を得られるようにします。全体を定義したうえで、漏れがなく重複しないように(MECEの原則に基づいて)分解を行います。この際、「いつ」「誰が」「どのように」という切り口から考えることがポイントです。 どの角度で考える? さらに、分析を効率的に進めるために型やフレームを身につけることが大切ですが、まずは手を動かし、そこから見えてくるものに対し「この角度はどうだろう?」や「この視点に漏れはないだろうか?」と批判的に思考を繋げていきたいと思います。 分析の仮説は? 営業戦略やプロジェクトの方針を検討する際には、営業データを多角的に収集することを心がけます。しかし、現状の分析が広がりすぎてしまう傾向があるため、大まかな見立てを立て、仮説を持って分析を行えるようにしていきたいです。 伝え方の工夫は? また、分析結果や方針を伝える際には、データを視覚的に整え、受け手の理解を深める努力をしたいと思います。具体的には、次のことを心がけます。まず、業務が「誰にとっての」「何のための」「どこまでをゴールにした」ものなのかを明確にします。そして、事象を分析する際には、必要なデータが十分に揃っているか確認します。作業を進める中で、分析に漏れがないか、異なる角度から検討が可能かを一度立ち止まって考察します。最後に、データを視覚的にわかりやすく作成することで、自身の分析にも役立ち、他者への説明の際にも理解しやすくなるよう努力します。

クリティカルシンキング入門

新発見!分解で見える本質

イシューの意味は? 「イシュー」とは、今ここで問い直すべき核心の問題を意味し、これまで学んだ分解やロジックツリーの考え方を活用できることを実感しました。その上、手順を踏んで伝える言語化や視覚的に示す方法との連動が重要であると認識しました。 事例から何を学ぶ? ファストフード店の事例では、客の立場では実感していたものの、経営者の視点から内外環境に応じたイシューの抽出やそれに基づく施策の検討が難しく感じられました。特に、売上の分解において、平日と休日、ハンバーガーとサイド、若者とシニアといった切り口は、自分の発想にはなかったため、新たな気づきを得ることができました。 売上戦略はどう練る? この考え方は、自身が担当する売上拡大策にも活用できそうです。売上を分解し、点数や単価、カテゴリーなど、どの切り口や問題があるのかを明確にした上で、適切な打ち手を講じていくことが必要だと感じています。また、取引先の食品小売店の売上に対しても、数字の内訳をしっかりと把握し、的確な施策を提案することが求められるでしょう。 日々のスキル向上は? 分解のスキルや経験が必要だと実感しているため、日常のニュース(決算関連やキャンペーンなど)の背景を分解・整理することを意識しています。さらに、社内や取引先への売上確認や報告が月次単位で行われることから、定期的にOutlookのスケジュールにリマインダー(毎月25日朝8時)を設定するなど、日々の業務で経験値を積む計画です。 理論の実践はどうなる? 「分解(階層、変数、プロセス)、ロジックツリー(インパクトの大きいものから)、MECE(漏れやダブりなく)」といった考え方を常に意識し、業務改善に努めていきたいと考えています。

リーダーシップ・キャリアビジョン入門

リーダーシップ開発の理論を実践に活かす

リーダーシップは鍛えられる? 今週の学習を通じて、「リーダーシップは開発可能である」という理論を具体的な事例を基に理解を深めることができました。マネジリアルグリッドについての学習では、リーダーの性質を「業績への関心」と「人間への関心」の2つの軸で分類し、リーダーの行動を整理して理解することができました。「業績への関心」が高いだけでも、「人間への関心」が高いだけでもうまく行かないということを具体的な事例を通じてイメージすることができました。 リーダー行動はどう決める? さらに、パス・ゴール理論についての学習では、「環境要因」と「部下の適合要因」によってリーダーの取るべき行動が変わることを学びました。パス・ゴール理論では、リーダーの行動を「指示型」「参加型」「支援型」「達成指向型」に分類しますが、2つ以上のタイプの行動を求められる場面もあるため、実際の業務を通じて効果的な行動を模索していく必要があると感じました。 学びをどう活かす? この学習を通して、マネジリアルグリッドを用いて自分の行動タイプを理解することができ、その理解を元に現状の自分に足りない部分を補うように努めたいと考えています。また、パス・ゴール理論を使ってチームの目標達成への道筋を描けるようになったので、職場でのメンバーに対する行動に取り入れていきたいです。 メンバー交流はどうする? 業務の中では、メンバーそれぞれが意見を話しやすいように促し、普段から話を積極的に聴く姿勢を示していきます。また、業務上の指示に関しては、メンバーが受け入れやすいように丁寧に説明し、納得して行動に移せるようにします。さらに、メンバーの自立性がそれぞれ異なることを考慮し、それに応じて行動を意識的に変えていきます。

戦略思考入門

戦略で見える新しい自分

日常の戦略はどう? 「私たちは日常でも戦略的に考えている」という考えが目からウロコでした。戦略的に考えられる物事とそうでない物事の差は、自分自身の知識や経験の幅・質に大きく影響されると実感しました。また、戦略とは「やること」と「やらないこと」を明確に決めることであると理解できました。多様なニーズに応える際に、どうしてもあれもこれもと手が広がりがちですが、これまで自分が考えていた戦略が、かえって問題点となっていたことに気づかされました。 中期戦略の決断は? まず、中期事業戦略の策定においては、将来を見据えたうえで、何を実施し何を断念するかを明確にし、その戦略案を基に社内で議論を進め、具体的な方針にまとめていきます。 単年度計画の組み立て方は? 次に、単年度の計画策定ですが、今年度前半の営業活動と成果を振り返り、後半の活動についても「やること」と「やらないこと」をはっきりさせることで、必要なリソースを集中させる方針です。営業メンバーとも5月に議論の場を設け、計画内容を固めていきます。 顧客対応の最適な形は? また、営業としての顧客対応スタンスの見直しでは、これまでの対応を振り返り、顧客と自社双方にとって最適な取り組みを考える必要があります。状況に応じた柔軟な対応と、適切な判断基準を整理し、例えば過剰な品質追求を控えるといった具体的な行動指針を検討します。 育成の工夫は何? 最後に、メンバー育成では、一人ひとりの知識や経験の引き出しを増やし、主体的かつ自律的に戦略的な考えで行動できるよう支援します。まずは自ら月1回の社内勉強会を開催し、メンバーにも実施を促すほか、未経験領域の営業案件に同席させることで、各自の知識の幅を広げる取り組みを進めていきます。

データ・アナリティクス入門

データ分析で失敗しないための初めの一歩

データ分析の初め方とは? データ分析を始める際、最初に注意すべき点は、いきなり「How」に飛びつくのではなく、まず原因を特定することが重要です。また、何を理想的な状態とし、そのギャップをどう見なすか、関係者との合意を得ておくことが肝心です。 MECEの概念とその活用法 MECE(Mutually Exclusive, Collectively Exhaustive)の概念については、有意義な切り口で切り分けることが大切ですが、乱用には注意が必要です。 データ分析の精度を高めるには? データ整理とデータ分析の違いや、分析の精度と説得力の関係については、明確な理解が求められます。例えば、データ分析がどのケースにより合致するかも考慮すべきです。現状から改善を目指すケース、あるいは未来に向けた戦略的なケース、それぞれに適したアプローチがあります。また、需要予測と異常検知といった異なるケースでの適用の違いも理解しておくと役立ちます。 ケースAの分析方法は? ケースAでは、例えばWEBサイトからの問い合わせデータや営業がSFAに入力した案件データを分析することが考えられます。現状の問い合わせ数に基づき、来期の目標やポテンシャルを過去のデータから算出するために変数分解を行います。 ケースBでの説得力あるストーリーの構築法 一方、ケースBでは、例えばグループウェアの切り替えに際し、役員を説得するためのデータ準備が求められます。説得力のあるストーリーを構築するために、現実的に入手可能なデータを調べることが重要となります。 具体的な結果を得るために これらのポイントを踏まえ、データ分析の取り組みを進めることで、より具体的で説得力のある結果を得ることができます。

データ・アナリティクス入門

小さな実験が拓く大きな未来

仮説はどう捉える? これまでの演習よりも多くのデータに触れる機会があったため、ただデータを見るだけではなく、まず「こういう仮説があるのではないか?」という視点を持って取り組むことが重要だと実感しました。また、仮説は一つに固執せず、他の可能性も網羅的に考えることで、思いつきに頼らないアプローチができると感じました。 PDF加工の落とし穴は? 一方で、PDFデータの加工には非常に頼りになる一面があるものの、誤認識により表の数字が間違うケースもあったため、過信せずに慎重に取り扱う必要があると痛感しました。 数字整理はどうする? ファネル分析とABテストは、どちらもすぐに実践できる手法として役立つと感じました。ファネル分析では、業務フローの数字が断片的にしか取得されていない現状を踏まえて、業務フローを整理し、必要なデータを集めてファネル化することが求められます。 仮説検証は進んでる? また、ABテストでは、うまくいっていない点に対して仮説を立て、比べるべき内容を明確にして、結果が確認できるデータを準備することが大切です。これらの手法を同時期にテストし、比較検証することで、より精度の高い分析が可能になると感じました。 分析の意義は何? さらに、なぜファネル分析やABテストが必要なのか、その意義を自分なりに言語化することも重要です。今週学んだ内容を整理し、データアナリティクスの重要性を前提として、具体的な提案にまとめる作業は大変有意義でした。 実践の意味は何? 最後に、実データに毎日触れてトライアンドエラーを重ねることが、さらなる改善点の発見につながると実感しました。これからも、日々の実践を通じて知見を深めていきたいと思います。

クリティカルシンキング入門

分解分析マスター!新たな視点で成長する秘訣

分解の重要性をどのように理解する? 分解の重要性を学ぶことで、物事を理解する際の解像度を高めることができました。具体的な手法としては、全体を定義した上で、MECE(漏れなくダブりなく)になるように確認することが大切です。また、分解の考え方は階層別だけでなく、変数とプロセスの視点でも可能であることを学びました。特にプロセス視点の分解は、これまであまり用いてこなかった分析方法であり、新たな発見でした。 社内活動に分解はどう役立つ? この分解の手法は、社内および顧客向けの活動に活用できると考えています。社内向けでは、社員を職責やキャリア、年齢、配置先などの異なる視点で階層別に分解することで、計画やプロジェクトメンバー選定に役立ちます。また、営業担当者の受注プロセスを分解することで、活動の効率化を図ることが可能です。 分解で顧客分析を進化させるには? 社外向けの活用では、顧客分析やマーケティングに分解の手法を用いることで、企業向けサービスの展開における顧客分類やセグメンテーションがより精密になります。規模や競合他社の視点から顧客を分解し、当社の強みを活かした付加価値の高いサービスを提供することができます。 更なる戦略を立てる方法とは? 例えば、社内では階層別に社員の情報を整理し、部署横断的なプロジェクトの際にはその情報を活用します。営業活動の効率化としては、受注経路を営業提案やリピート注文などのパターンで分解し、それぞれの特徴を分析することで、リソースの最適活用が可能です。 社外では、ターゲット顧客の選定時に規模や分野、競合他社の視点から分析し、強みを発揮できる顧客にアプローチします。このように、分解を活用することで、より効果的な戦略を立てられると考えています。

クリティカルシンキング入門

論理的思考で情報共有スキルアップ!

論理はどうまとめる? 物事や主張を相手に正確に伝えるためには、まず論理構造を考えてから文章を書くことが重要だと学びました。普段プレゼンや資料作成の際は理由づけを意識しているものの、会話やチャットツールでの報告や情報共有の場面では忘れがちでした。そのため、主張と根拠を考え、論理的な構造を練る練習を積み重ね、素早く対応できるようにしたいと思います。 根拠はどう伝える? さらに、演習を通じて、根拠が自身にとって当たり前であるほど、言語化が難しくなることに気づきました。例えば、「コストがかからない方が良い」という仕事上では当然の選択肢を、いざ言語化しようとすると難しいと感じます。このような状況を改善するためにも、普段から根拠を言語化する練習が必要だと感じます。 急な確認はどう乗り切る? 具体的に想像したのは、口頭での軽い打合せの後に、相手から「急ぎ確認」を依頼されるような場面です。この場合、議事録はなく、自分の記憶に基づいて確認を取らなければなりません。しかし時間がないため、ミーティングや資料作成を避け、口頭やチャットツールでの確認となるでしょう。 確認内容はどう整理する? 次回からは、まず相手に確認したいことを明確にすることから始めます。情報を主張と根拠に分け、どの部分がどう繋がるのかを整理します。この過程では、学んだピラミッドストラクチャーが役立つでしょう。そして、最終的な主張を見極め、そのために必要な根拠情報を確認します。不必要な情報は削除します。 主張はしっかり伝わる? 最後に、最終的な主張を先に示し、続けて根拠を論理的な順序で展開します。それにより、相手が「何をしたらいいのか」をすぐに理解できるようになっているかを確認し、問題なければ送信します。

クリティカルシンキング入門

もう一人の自分を発見する時間

どうしてもう一人の自分? クリティカルシンキングでは、「もう一人の自分を育てる」ことと「自分の思考の偏りを意識する」考え方が非常に印象的でした。自分自身の思考の癖を客観的にとらえることで、今まで見落としていた角度から物事を考えられるようになり、これまでになかった発想が生まれるきっかけとなりました。 普段の発想を疑う? ライブ授業での体験を通じ、普段の生活で固定化された発想や偏りに気づかされました。仕事においても、業種や文化、年代、地域など多様な視点から「客観的に」「論理的に」物事を考える習慣が必要であると実感し、帰納法や演繹法という思考法の重要性を再認識しました。 ビジネス現場でどう? この学びは、さまざまな実際のビジネスシーンで生かすことができると感じています。例えば、新規事業や融資交渉の場面では、相手の立場やリスクを考慮して説得力のある根拠と複数の提案を準備することで、効果的なプレゼンテーションが可能になります。また、経営状況を報告する際には、数字や事実を整理し、相手が知りたい情報を先回りして提供する力が身につくと考えています。 多様な意見はどうする? さらに、事業拡大のフェーズ設計や業務効率化の選択、部下への指示出し、社内コミュニケーションの向上、そしてチームビルディングにおいても、客観視する力が大いに役立ちます。自分の考えの偏りを避けながら、複数の基準でタスクを精査し、メンバーの多様な意見を取り入れることで、より良い判断と円滑な意思疎通が可能になると実感しています。 帰納と演繹はどう? また、帰納法と演繹法の使い分けについても興味深く感じました。具体的な場面でどちらの手法が最適か、そしてその基準についてさらに学びを深めたいと思っています。

クリティカルシンキング入門

分解と工夫で見える新たな発見

なぜ分解して把握する? 物事を分解して状況の解像度を上げることの重要性を学びました。特にデータ分析の視点から、①加工の仕方、②分け方の工夫、③分解時の留意点という3つのポイントに着目して学習を進めました。 加工手法ってどう? まず、データ加工については、意味合いを分かりやすくするために基準を設け、グラフ化する手法に注目しました。与えられた票をそのまま見るのではなく、自ら欄を追加して全体を俯瞰することで、絶対値や比率などの数値から隠れた傾向を明確にする―いわゆる「可視化」が鍵となります。 どう分けると良い? 次に、データの分け方の工夫では、手元のデータをもとに状況を捉えるため、単に機械的な10刻みで区切るのではなく、試行錯誤を繰り返しながら意味のある切り口を見つけ出すことの大切さを実感しました。場合によっては、元のデータに立ち返って再検証する方法も有効です。 分解の注意点は? また、実際に分解する際は、When(いつ)、Who(誰が)、How(どのように)の観点を持って整理し、自分自身に本当にそうかと問いながら、複数の切り口から検証していく姿勢が求められると理解しました。こうした実践を通じ、たとえ一度で完璧な結果が得られなくとも、傾向が見えてくること自体に大きな価値があると感じます。 分析結果をどう活かす? これらを踏まえ、まずは自分の部門での最近の取り組みを題材に、発生件数や予測される件数、台数などを定量的に観測し、事象の強弱からリスクの高低を分類する(いわばクラスタリングする)というアイデアが浮かびました。加工方法や分類の工夫は、実践経験を重ねる中で深まるものだと考えていますし、他にも有効なアプローチがあれば議論を通じて共有できればと思います.

データ・アナリティクス入門

動きながら考える仮説の極意

どんな仮説が必要? 仮説とは「ある論点に対する仮の答え」であり、答えである以上、いい加減な内容では通用しないと実感しました。どのような仮説を立てるかが極めて重要であり、良い仮説を構築する方法について疑問が生じました。 原因をどう究明? また、課題解決の仮説は、単に「どこに問題があるか」と考えるだけでなく、問題箇所が特定できた場合でも、その原因を十分に掘り下げるプロセスが不可欠であると感じました。徹底した分析によって、問題の本質に迫ることが大切だと思います。 反論はどう除外? さらに、仮説はそれ自体以外の反論を排除しながら構築すべきだと考えます。まずは対象となる事象(What)を明確にしたうえで、問題の所在(Where)を適切に分解し、抜け漏れのない形で仮説を立てないと、説得力を持った論点整理は難しいのではないかと感じました。 対応をどう構築? 加えて、ある事象に対して対応時間が長期化しているという問題を例に考えると、What自体は把握できているものの、問題の具体的な所在(Where)に対する仮説が立てられていない現状があります。問題点をMECEに分解しながら仮説を検証するためにも、現場の実情を踏まえてまずは動いてみるというアプローチも一つの方法ではないかと思います。 試行で見える答え? こうした見解から、動きながら仮説を立ててみる方法が有効なのか、またその過程で優れたインタビューの実施にも注力する必要があるのではないかと考えています。同じように、受講している皆さんもどこに問題があるのか(Where)の見極めに悩まれているのではないでしょうか。まずは実際に動きながら仮説を試してみることが、より良い解決策へとつながると感じました。

「考え × 整理」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right