クリティカルシンキング入門

数字の裏に隠れる小さな真実

数値分解の意義は? 数値を細かく分解・加工することで、見落としがちな示唆を得る可能性があります。また、数値はグラフ化することで、より分かりやすく伝えることができます。分析の際は、「誰が」「いつ」「どのように」という多角的な切り口を用意しておくと効果的です。 分解作業の狙いは? 今回のワークは、与えられた数値をどのように分解するかに焦点を当てました。アンケートの設計・配信・分析といったタスクにおいては、どの切り口でどのような分析を進めるか全体像を押さえつつ、選択肢を適切に分解しておかなければ、いくらデータを集めても活用できないリスクがあります。 仮説検証はどう? また、新しい発見がなくても、今回の分解作業で得られなかった知見を学びとして前向きに捉えることが大切です。単にアンケートを配信するのではなく、小さな仮説検証を重ねることで、より精度の高い内容にブラッシュアップしていくことが求められます。 生成AIの使い方は? まず、全体像を明確に定義した上で、生成AIを活用しながらアイデアを整理します。その後、専門知識を有する関係者と確認を行い、情報が重複せず整理されているかをレビューしていきます。 基本属性の整備は? さらに、顧客の基本属性については、共通の型として整備し、自分だけでなく部署全体で再利用できるように準備を進めています。

データ・アナリティクス入門

データで解き明かす!仮説立案の極意

仮説の種類と意義を知る 仮説とは、ある論点に対する仮の答えのことを指します。仮説には目的に応じて「結論の仮説」と「問題解決の仮説」がありますが、その中でも仮説は様々なフレームワークを用いて複数用意する必要があります。検証方法としては、データ収集が重要であり、目的対象を検討した上でアンケート調査や口頭調査を行うことが有効です。 打ち手を選ぶ際のフレームワーク活用法は? 業務に活用できる場面としては、打ち手の検討があります。問題解決のためにどの打ち手が効果的かを考える際には、フレームワークを用いてどこに効果があるかを検討することが求められます。ブレインストーミングから打ち手を選定する際にも、枠組みから検討し、その打ち手の効果測定や仮説作りのためのデータ収集が必要です。 フレームワークで複数視点を持つには? 複数の仮説を持ちながら物事を検討することは重要です。フレームワークを活用することで、様々な視点から会議に参加する準備が整います。そのためには、フレームワークの知識を習得し、何が論点になっているのかを正確に確認することが必要です。 データ検証の質を高める手法 データ検証の項目を洗い出す際には、目的が曖昧なままアンケート調査を行うのではなく、目的を明確に定め、それに沿った項目や枠組みを検討しながら実施することで、質の高い結果が得られます。

データ・アナリティクス入門

残業削減の鍵はロジックツリーとIT活用にあり

問題の本質をどう見極める? 問題や課題に対応する際、すぐに対応策を安直に打ち出すのではなく、まずはその問題や課題がどのようなもので、なぜ、どこで発生しているのかを考える必要があると学びました。これを実現するために、MECEの考え方を用いてロジックツリーで問題や課題を細分化し、対応策を複数検討し、状況に応じて採用する対応策を決定することが合理的な判断となることがわかりました。 IT活用で解決策を見つけるには? また、ITの活用によって業務効率化を検討する際には、「業務効率化」という漠然とした課題を、ロジックツリーで細分化することで解決の手がかりを得ることができます。具体的には、どこで、なぜ、どのような問題が発生しているのかを特定し、その問題を解消できるITを導入することによって、費用対効果を意識した問題解決が可能となることを理解しました。この学びは、現実の問題解決に活かせるものだと考えています。 部署の問題をどう改善する? 現在、所属する部署では残業時間が非常に多く、人員も多いという問題があります。この部署でどの作業が一番多く時間を要しているのかを、ロジックツリーで特定しました。その結果、出荷日や納期変更が頻発している作業が問題であると判明しました。したがって、この部分に有効なITの導入や、業務プロセス自体の見直しを提案したいと考えています。

データ・アナリティクス入門

データ分析で見えた本当の価値とは

データ分析の目的を明確に データ分析は、目的を持たずに取り扱うと、ただの意味のない数字でしかありません。そのことを今回の学習で目の当たりにすることができました。データ分析を行うにあたっても、なぜその分析をするのかという背景が見えなければ、同じ数字でも全く違った見え方をしてしまいます。そこで重要なのは、何を目的として分析を行うのかを明確にすることです。目的意識を持ち、定量的にデータを取り扱うことの重要性を学びました。 データで組織をどう活性化? 施策推進について考えると、個々の受付完了指標から組織や部単位での比較まで、データの切り口は多岐にわたります。組織が正常に稼働しているか、個人については「自分は頑張れているか」を評価することができます。さらには、何をもっと伸ばし、何を改善すべきか、メンバーのモチベーションの維持・向上のためにデータを利用したいと考えています。 データの伝達手段は? データを出すタイミングについては、デイリーにするか毎月末にするかなど様々な選択肢があります。組織やプロジェクトチームが活性化するための指標として、データを積極的に活用していきたいと考えています。データの伝達手段もまた多様で、メールや対面、ミーティングなどがあります。伝えたい内容、そのボリュームや重要度に応じて手段を使い分け、効果的に展開していきたいと思います。

アカウンティング入門

損益計算書に秘めた経営のヒント

損益計算書の役割はどうなってる? 損益計算書(P/L)は、売り上げから各種コストを段階的に差し引き、最終的に当期純利益を算出する重要な資料です。この構造を理解することで、数字の動きや企業の経営状況を把握しやすくなりました。 利益分類の意味は何? 利益の分類についても学び、利益が赤字であっても必ずしも経営上の問題を意味するわけではなく、売り上げや販管費、そして特別な支出の発生など複数の要因によって結果が左右される点を再認識しました。それぞれの利益の意味を正しく理解することが、正確な経営判断につながると感じています。 コスト削減の影響は? また、単純にコスト削減に偏ると、提供価値が下がり、顧客満足度の低下や売り上げ減少を招いてしまうという点も印象に残りました。ビジネスにおいては、まず提供価値を明確に定義し、その上で売り上げの伸ばし方やコスト削減の方法をバランスよく考えることが重要であると理解しました。 今後の計画はどう見直す? 今後は、来年の予算計画や施策コストの計上にあたり、P/Lの正しい理解を活かして、売り上げ効果とコスト削減効果を両面から検討していきたいと思います。まずは事業部のP/Lをしっかり把握するために、必要な資料をアカウンティング担当から入手し、特別利益や損失、税金の扱いについても深掘りして学んでいくつもりです。

データ・アナリティクス入門

仮説で切り拓く学びの未来

仮説の種類は何か? 仮説は、目的達成のための仮説や問題解決への仮説という2種類の仮説と、過去・現在・未来の視点を組み合わせた全6通りに大別されます。 複数仮説の効果は何? 仮説思考においては、複数の仮説を立てることと、その網羅性を意識することが重要です。網羅性を確保するためには、3C(Costmor、Competiter、Conpany)といったフレームワークを用い、さらにConpany分析の詳細については4Pの視点から整理することが有効です。 未来検証の焦点は? 未来型の目的に対する仮説検証では、目的達成のためにどのような考察や分析が必要かを事前に整理します。例えば、ある番組が視聴率を獲得できるかという問いに対しては、定型的な分析に入る前に3Cや4Pのフレームを用いて、どの部分にボトルネックが存在するのか、またそのボトルネックをどの程度克服できるのかという視点で考察を進めることが求められます。 仮説整理の進め方は? 依頼された仕事に取り組む際は、まずそれがどの仮説に該当するかを整理し、問題点についての仮説検証を行います。具体的には、WHAT、WHERE、WHY、HOWの順に問いを整理し、すぐにWHEREに入らないように注意します。そして、仮説の網羅性を保つために、フレームワークを意識しながら整理資料を作成することが推奨されます。

リーダーシップ・キャリアビジョン入門

エンパワメントで高める成長の秘訣

どうして余裕が必要? エンパワメントを効果的に行うためには、まず自分自身に余裕を持つことが重要であると学びました。忙しいときや余裕がないときに仕事を任せがちですが、それでは十分なサポートができません。求めるクオリティの成果を得るためには、適切な質問をし、相手の知識やスキル、経験をしっかり把握した上で、不足している情報をどのように提供するかを考慮する必要があります。このような対話を重ねることで、業務が常にストレッチゾーンにあるようにしたいと感じました。 どんな経験を活かす? まずは自分自身の余裕を確保することを意識し、何をエンパワメントできるかを常に考えることが重要です。エンパワメントを行う際には、過去の経験を振り返りつつ、必要な情報やサポートを慎重に見極めて進めていく必要があります。また、目的や目標を明確にし、共有するべき着地点を言語化することも大切だと考えます。 いつ進捗を確認する? 毎朝、エンパワメントの内容について考え、その計画を立てることを習慣にしたいです。質問すべき項目を5つ以上考えておくと良いでしょう。また、依頼した仕事の途中経過をいつ、どのタイミングで確認するかも計画に組み込んでおくことが重要です。相手を労りつつ、コンフォートゾーンから一歩踏み出したストレッチゾーンを目指す業務の負荷についても常に考慮していきたいと思います。

クリティカルシンキング入門

数字の捉え方を変える新発見への旅

数字の切り口をどう捉える? 数字の切り口には複数のパターンがあり、その見え方は切り方次第で変わるということがよく理解できました。しかし、切り口によっては解釈を誤る可能性もあるため、それをどのように防ぐかが重要なポイントだと感じました。 フレームワーク活用のヒントは? 分解の方法として3つのフレームワークが存在し、特にプロセスで切り分ける方法は今後意識して取り入れたいと思います。これらが効果を発揮するためには、ある程度の基礎知識やMECEといった考え方が必要であり、体系的に知識やスキルを習得する必要性を感じました。 管理会計で何を見極める? 現在の職務において、既存事業の理解には、売上構成などを管理会計的に分析することが重要だと考えています。ここでGailという手法が活用できると思いました。最初に事業を分解して特性を理解し、その特性から課題を洗い出していきたいと考えています。そして、今後の社会情勢と照らし合わせて事業の方向性を整理したいです。 整理と議論はどう進める? まずは既存事業部の情報収集を始め、その一方で管理会計の知識を身につけ、管理会計としてのプロセスを整理し、フォーマットを作成してみたいと思います。これにより自身の事業理解を深め、経験者とディスカッションを行い、現状の事業課題や今後の事業戦略に反映したいと考えています。

リーダーシップ・キャリアビジョン入門

異組織連携で磨く真のリーダーシップ

リーダーシップの秘訣は? 効果的なリーダーシップに関する知識として、マネジリアルグリッド、パスゴール理論、そして適合要因と環境要因について学びました。以前、細かい指示で部下に裁量権を与えない点が課題だと指摘された経験があり、それ以来、指示型や支援型のリーダーシップを極力避けてきました。しかしその結果、部下に対して、解くべき課題や課題解決の手法について強く指導する傾向が出ていると感じています。言い換えれば、マネジリアルグリッドの観点からはタスク志向型となりやすく、チーム内の協働を十分に促進できていないと痛感しています。 人口対策の方向は? 取り組んでいる人口減少対策の現場では、何が課題で何を目標とすべきかという点が不明瞭なことが問題となっています。さらに、自組織だけでなく、他組織の担当者を含む大きなチームでプロジェクトを進める必要があり、そこでどのようなビジョンを示し、どのようにタスクを分担するかという難しさを再認識しました。各担当者の自主性や主体性を尊重しながら、状況に応じた指示型や支援型のリーダーシップを使い分け、取り組んでいきたいと考えています。 団体協働の心得は? こうした状況下で、自組織以外の団体と共同でプロジェクトを進める際のリーダーの心得について、アドバイスをいただける方がいらっしゃれば、ぜひ教えていただきたいです。

戦略思考入門

目的を追求するための問い直しの力

手段にとらわれないゴール設定は? ゴール設定の重要性は理解しているものの、気がつけば手段の巧拙に目を奪われてしまうことがあると再認識しました。最短の道が迂回路である場合も多く、遠回りに見える近道を見つけるのは難しいですが、手段の技術を磨きたいと感じています。 生成AIにおける限界とは? また、雑談の中で生成AIからうまく回答を引き出せないという話を聞くことがあり、質問力や言語化能力の難しさを改めて感じました。万能に見える生成AIにも限界があると理解し、仕事で生成AIを提案する際には、この点にもう少し配慮すべきだと感じています。 目的の抽象化はどう深掘りする? 目的には抽象化の階層があります。例えば、業務効率を上げるのは利益率を上げることかもしれません。業務効率が難しい場合、顧客回転率を上げるといった他の手段が費用対効果が高いかもしれないと考えています。このような目的の深掘りは意外と軽視されがちで、改めて意識することが大切だと思いました。 「So what」の問い直しの重要性? 目的を確認する際には、「So what」を1、2回ではなく、3〜5回問い直す習慣をつけるよう心がけたいです。これにより、より本質的な目的に到達でき、他の手段を広範な選択肢の中から見つけ出せるのではないかと考えています。

クリティカルシンキング入門

適切な問いが導くデータ活用術

適切な問いはなぜ? 今週の学びを通じて、問題解決における「適切な問いの設定」の重要性を改めて認識しました。明確に定義された「解決すべき課題」が、効果的な分析と解決策の導出につながることを学びました。また、データの適切な加工と分析によって情報を構造化し、視覚的に明確な形で提示する手法の有用性を実感しました。さらに、データの図表化が分析の精度向上に寄与することを体感し、実務での具体的な活用方法を見出すことができました。 現職での実践は? 「問いを立てる力」と「データの分析手法」を現職の業務改善プロジェクトで実践していきます。業務フローの課題特定に際しては、チームメンバーと「本質的な課題」を共有し、分析を深めるプロセスを確立しようと考えています。また、提案資料作成においてはデータの視覚化を通じて説得力を高め、経営層の的確な意思決定をサポートしたいと思います。 解決力高める秘訣は? 課題解決力を高めるため、以下の取り組みを実践します。毎週の振り返りで課題を整理し、本質的な問いを設定し、分析結果を図表化してチームで共有し、活発な意見交換を行います。わかりやすく論理的な資料作成を心がけ、改善を重ねます。また、学んだ内容を繰り返し実践し、定期的な振り返りで成長を目指します。これらの取り組みを通じて、実務での課題解決力を高めていきたいと考えています。

戦略思考入門

自分も挑戦!未来志向の学び

大量生産のリスクは? 昔、大量生産が支配していた時代、短期間は売上を伸ばすものの、在庫を抱えるリスクによって工場や企業が不利益に苦しむ例が多く見受けられました。コスト削減を狙って大量生産し、営業活動で利益を拡大する手法は、ある意味で両刃の剣でした。 無形サービスの魅力は? その後、物品から無形のサービスへと転換が進んだことで、同一のコストで作成した価値を広く販売する仕組みが生まれ、これがネットワーク経済性につながっていると感じます。今後は、先を見据えたサービス提供が鍵となり、柔軟に変化に対応できる者が勝ち残る時代になるのではないでしょうか。 ネットワークの効果は? 現在、私たちは自分のサービスやスキル、さらにはコミュニケーション力を提供する活動を行っています。ネットワークを活性化させることで、高い付加価値をつけたサービスの提供が可能となり、様々な分野で成果を上げられると実感しています。また、チーム体制を拡充することでサービスの幅が広がり、利益増加にもつながると感じています。ただし、関わる人それぞれのレベルに差があるため、一定の成果を保つためには教育が重要な役割を果たすと考えています。 未来の可能性は? 今回の研修内容を受け、今後の未来がどのように変わっていくのか、その可能性について皆さんと意見を交わせたらと思います。

「効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right