リーダーシップ・キャリアビジョン入門

振り返りで学び直す、新たな視点

メンバーのやる気はどう生まれる? メンバーのモチベーションは仕事の質に大きく影響します。D.マグレガーのX理論・Y理論によれば、現代社会ではマズローの欲求五段階説の低次の欲求は比較的満たされています。そのため、人を動かす際には目標や責任を与え、目標達成時には報酬や賞賛を付与することが効果的です。すぐに実践できるモチベーションの向上方法として、「尊重する」「目標設定をする」「フィードバックを行う」「信頼性を高める」といった手法があります。 振り返りの本質は何と見る? 仕事を振り返る際には、「出来なかったこと」ではなく「出来たこと」や「出来た理由」に注目したいと考えます。また、自分は振り返りの際にただ「思い出す」だけになることが多いため、コルブの経験学習モデルを意識し、特に「具体的経験」と「抽象的概念化」の部分に重点を置いてしっかりと振り返りを行いたいと思っています。日常業務に追われて振り返りをしなくなってしまうため、意識的に振り返りの時間を設けることを大切にします。 コミュニケーションはどう深める? チームのメンバーとのコミュニケーションでは、相手を尊重することを心がけたいです。また、明確な目標設定や適切なフィードバックを通して、メンバーのモチベーションを高めることを目指します。日常的に信頼される行動を心がけることで、メンバーからの信頼を築いていきたいと考えています。 面談から何を学ぶ? 業務中にメンバーと面談する時間を確保し、彼らのモチベーションの状態を把握するよう努めます。その上で、目標設定やフィードバックを行い、モチベーションの向上に努めます。毎日一人ずつ面談を行い、メンバーの状況に応じて「業務で起こったこと」についての振り返りを行ったり、「上手く行った理由」「上手く行かなかった理由」を考え、それをもとに今後の仕事にどう活かすかについて話し合いたいと思います。

リーダーシップ・キャリアビジョン入門

振り返りの実践から成長のヒント

満足と不満の理由は? ハーズバーグの動機づけ・衛星理論では、仕事に対する満足要因と不満要因が存在することが示されています。リーダーとして、尊重、目標設定、フィードバック、信頼関係の構築など、実践可能な手法を取り入れることが大切だと感じました。ただし、実行段階で過度に干渉しないよう、各人に対してどこまで関与するかを慎重に考えながら行動する必要があると学びました。 振り返りの工夫は? また、振り返りの習慣化に関するワークを通して、振り返りの方法や押さえるべきポイントについて多くの知見を得ました。相手を評価することで、自分が味方であることを示す効果や、振り返りの際に自らの言葉で語ってもらうことの重要性を実感しました。さらに、成功体験を振り返る際には、実際に行った行動だけでなく、その時に考えたことや感じたことにも着目し、より深掘りする質問を投げかけることが必要であると感じ、今後実践していきたいと思いました。 経験学習モデルの疑問は? コルプの経験学習モデルも非常に有益でした。具体的な経験を積むこと、その後振り返りを行い、自己流のノウハウや持論に落とし込む(抽象的概念化)とともに、次なる機会に活用する(能動的実験)というサイクルを繰り返すことで、能力の向上が促されると理解しました。特に、3番目と4番目の段階については、今まで十分に意識していなかったため、今後積極的に取り入れていきたいと考えています。 面談の改善策は? 最後に、これまで取り組んできた斜めからの振り返り面談の経験についても振り返りました。営業マンを対象とした面談の実施を通じ、振り返るべき項目が漏れなく整理されるよう工夫することの重要性を再確認できました。コルプの経験学習モデルの知見を、チームミーティングで共有し、面談を通じて営業現場に良い変化と成果がもたらされるよう、今後も取り組んでいきたいと考えています。

アカウンティング入門

数字の裏側に迫る経営革新の道

数字の背景を見た? 今週の学習で特に印象に残ったのは、財務数値の見方が「数字そのもの」ではなく、その背景や因果関係に着目することの重要性です。P/Lについては、売上や利益額だけでなく、利益率やコスト構造を確認することで、どこで利益が発生し、どこに改善の余地があるのかを探る視点を学びました。一方、B/Sでは、負債と資本という資金調達方法と、資産としての活用先を対比することで、資金繰りや経営の安定性を判断する手法を理解しました。さらに、P/LとB/Sを関連づけて分析することで、企業の全体像を立体的に把握できる点も大変有意義でした。今後は、こうした視点を業務改善に活かし、改善策が利益率や資金繰りにどのような影響を与えるかを明確に示せるよう努めたいと考えています。 活かす場面は何? ① 活用したい場面 請求・入金フローの改善やコスト削減の提案の際に、学んだ視点を活用したいと考えています。たとえば、請求処理の誤り削減や入金遅延の改善に取り組む際、P/Lの視点では改善による利益率向上、B/Sの視点では資金繰りや運転資本の改善効果を具体的な数値で示すことが可能です。 提案は伝わる? ② 学びを活用している姿 実際に改善案を経営層や関係部署に提示する際には、売上総利益率や回収サイトの短縮日数など、具体的な数値を用いて説明しています。その結果、「この改善により年間○○円のコスト削減や資金回収の短縮が見込まれます」と示すことで、提案の根拠が明確になり、納得感が高まっています。 改善行動は具体的? ③ 具体的な行動 月に一度、自部署のP/L・B/S指標(利益率や運転資本)を確認し、改善余地を探る習慣を取り入れています。また、各業務改善案ごとに数値効果を試算するフォーマットを作成し、改善施策の実施前後で数値を記録・比較することで、効果を可視化できる体制を整えています。

データ・アナリティクス入門

数字が照らす学びの道

どうやって特徴を捉える? 大量データを比較する方法として、まずデータの特徴をひとつの数字に集約し、グラフ化して視覚的に把握する手法を学びました。これにより、数値としての評価だけでなく、データの散らばりや傾向も同時に捉えることが可能になります。 平均値の違いを知る? 平均値や中央値を確認するために、単純平均、加重平均、幾何平均、そして中央値の各手法を比較しました。今まで単純平均や加重平均を主に用いていたため、このうち幾何平均と中央値の手順が分かっていなかったために、業務上物足りなさを感じていた点に気づくことができました。 分布の形はどう判断? また、データの平均的な分布をグラフ化することで、これまで感覚的に捉えていたデータの散らばりを、標準偏差などの具体的な数字として表現する必要性を認識しました。こうした数値化は、データのばらつきが大きいのか小さいのかを明確に捉える上で非常に有効です。 利用状況をどう見る? さらに、提供しているサービスの利用状況を単なる数の集計として週次報告している現状に対して、まだ活用できていないデータの中に、利用者の属性や利用時間帯などの詳細な情報が含まれているのではないかと考えるようになりました。これらを分析することで、サービスの改善点や利用者の利便性向上につながる提案が可能になると感じています。同様に、ライセンスやクラウドの予算についても、感覚的な予測に頼らずデータに基づいた数値をフィードバックすることで、より説得力のある結果に結びつくと考えています。 予測結果は合致? また、1年前に作成した将来のクラウド利用予測と現状を比較するタイミングを迎えたことから、その分析を活用し、利用していなかったデータも含めてさらに掘り下げていこうと考えています。あわせて、学習用の動画を見直すことで、自分自身の理解をより一層深める予定です。

クリティカルシンキング入門

小さな視点、大きな発見

データはどう見える? 一次データだけでは見えてこない傾向があるため、データをさらに細かく分け、グラフなどのビジュアル資料で確認することが重要です。 切り口の意味は? 刻み幅や意味のある切り口に基づく分け方を意識し、仮説を立てながらデータを整理することで、分け方によって異なる結論が導かれる点に注意が必要です。 全体像の正確把握は? 分解して検討した結果、特徴的な傾向が浮かび上がったとしても、それが全体を示すものではありません。すぐに結論を出さず、自分自身を疑う姿勢を持ち、思考の制約にとらわれないよう心がけることが求められます。MECEの考え方を活用しながら、全体を部分に分ける階層分解、売上を単価と数量に分ける変数分解、そして業務プロセスごとに分けるプロセス分解の手法を上手に使い分けるとよいでしょう。 分析の焦点は? 例えば、変数分解を用いてメンバーそれぞれの売上傾向を分析する際には、まず優れた成績の例と比較して単価や数量のどちらに課題があるかを明確にします。単価に問題がある場合は、コンタクト先を階層分解してどの層へのアプローチが不足しているのかを検討し、販売数量に問題がある場合は、プロセス分解を通じてどの業務プロセスに時間がかかっているのかや課題が潜んでいるのかを明確にすることが効果的です。 販売戦略の再考は? また、商品販売では、階層分解を活用して販売好調な商品の傾向を把握することが重要です。購入者を細かく分けることで、より明確なターゲット層を設定し、戦略の見直しに役立てることができます。 成果と速度の両立は? 実際の業務では、質の高い成果とともにスピードも求められます。トレーニングの積み重ねによって両立が可能だと考えていますが、実際の業務でどのように質とスピードを両立しているか、具体的な方法があればぜひお聞かせいただきたいです。

マーケティング入門

挑戦と成長を紡ぐナノ単科の軌跡

どうやって潜在需要を掴む? 顧客には、既に意識されているウォンツと、まだ気づかれていない潜在的なニーズが存在することを学びました。ウォンツは具体的なモノやサービスとして現れるため、競合もすぐに気付きやすい反面、ニーズは相手の心理や本音を丁寧に引き出さなければ把握できません。デプスインタビューや行動観察などの手法を通じて、相手の内面にある潜在需要を掴むことが重要です。 ニーズ把握後はどうする? ニーズを把握した後のステップは、その欲求に応える具体的な方法を考えることです。自社の強みや、顧客が魅力を感じるポイントを丁寧に分析することで、ブランドイメージを保ちつつ新たな市場に参入することが可能になります。後発企業であっても、顧客のペインポイントをしっかりと理解し、その問題を解決するアイディアを生み出すことで、新たなビジネスチャンスを見出せると感じました。 高校生は何を求める? また、広報業務としては、顧客である高校生のニーズを正確に把握し、それに応えるコンテンツを提供することに注力しています。HPやSNS、広告などを通じて、顧客が求める情報を届けるため、常にニーズやウォンツを深堀りした上で制作物を作成しています。広報部門は、入試対応も行うことで高校生との接点が多い部署となっており、彼らの大学生活に対する期待や希望を経営層に伝える役割も担っています。 どうやって顧客本音を集める? 具体的には、オープンキャンパスなどのイベントで多数の高校生や保護者が参加する際、満足度アンケートの設計と分析を通じて顧客の声を集め、より顧客目線に立った設問に改善していく計画です。また、新入生を対象としたデプスインタビューを実施し、大学選択の基準や求める大学生活、情報の入手方法など、直接大学に近い立場から本音を引き出し、今後の大学運営や学部設計に活かしていこうと考えています。

データ・アナリティクス入門

データが教えてくれた学びのヒント

代表値で全体像は? データをどのように加工して把握しやすくするかを学びました。まず、代表値を求めることで全体像をシンプルに掴む方法を理解しました。代表値としてよく使われる平均値は、データ全体の傾向を捉える上で便利ですが、ばらつきを反映しにくいという欠点があります。そのため、目的に応じて加重平均、幾何平均、中央値などの手法を使い分ける必要があると感じました。 偏りはどう捉える? また、データの偏りを把握するために標準偏差が有効であることを学びました。標準偏差は、複数のデータが平均値からどれほど離れているかを示し、ばらつきを具体的に表現する指標として役立ちます。 グラフと予測は? さらに、グラフ化されたデータにアプローチする方法も学習しました。グラフ上の特徴的な部分に着目することで、問題点を深堀りしやすくなるという点や、グラフを見る前に予測を立て、その予測と実際のデータを比較する方法が、分析の深化に効果的だと感じました。データ同士を比較し、仮説を立てることで、次に分析すべき方向性が明確になるのだと実感しました。 代表値の使い分けは? 代表値の選び方についても触れました。たとえば、年度ごとの収益を分析する際、単に平均の粗利額を示すのではなく、プロジェクトごとに異なる売上金額を加味して加重平均を採用することで、より適切な表現が可能になると考えました。また、ばらつきの表現に標準偏差を用いることについては、これまであまり意識していなかったため、今後は積極的に活用していきたいと感じました。 学びをどう活かす? 今回の学びを通じて、データを多角的に把握することの重要性を再認識しました。今後は、常に自分の予測と実際のデータとのギャップに注目し、過去のデータや他のプロジェクトのデータとも比較しながら、具体的な仮説を立てて深堀りを進めていきたいと思います。

クリティカルシンキング入門

データ分析の新発見と発想転換の旅

データ分析の工夫は? 今週の講義では、多くの気づきがありました。まず、データ分析においては、単にデータを眺めるだけでなく、少し手を加えることが重要だということです。具体的には、販売戸数と単価の組み合わせで売上を構成する新しい項目を作成したり、数字を視覚化するためにグラフを使ったりすることです。これまでの自分には、そうした手間をかける習慣がなかったことに気づかされました。 分割方法はどうかな? データの分割方法についても新たな視点を得ました。従来は年齢別に10歳ごとで分けていましたが、大学生に焦点を当てた18歳~22歳の分割や、4歳ごとの分割法を知り、新鮮な驚きがありました。こうした視点の転換は、日常業務にも活かせると感じました。 分解の効果は? 博物館での演習を通じて、分解を重ねることで新たな洞察が得られることがわかりました。ただ満足するだけでなく、さらなる分解が重要だと認識しました。講師からも、迷ったらとにかく分けてみること、特徴的な結果が出なければそれは次のステップだという考え方を学び、大変共感しました。 MECEは本当に有効? 最後に、MECE(漏れなくダブりなく)の考え方について学びました。今後、業務で悩んだ際には、この考え方を基に問題を整理していきたいです。 来店客の傾向は? 店舗に来店するお客様を分析することで、今後の店舗運営に役立つアイデアが出てきそうです。現在、来客数が減少している問題があり、分析を通じてその原因を探ることが必要です。スタッフの協力を得ながら、効果的な施策を考えていこうと思います。 学びの実践方法は? 今回学んだ手法は、①手を動かす、②機械的に分けない、③複数の切り口を試す、④悩むくらいなら分ける、⑤失敗は次のステップ、⑥分けることで分かる、というステップで進めていくことが重要だと実感しました。

クリティカルシンキング入門

読んでもらえる資料作成の秘訣

本講義では、相手に「読んでもらえる」文章やスライドの作成に特に注意を払うことが大切だと再認識しました。以下に具体的なポイントをまとめます。 まず、スライドの作成において重要なのは、関連する情報をただ単に盛り込むのではなく、伝えたいメッセージを明確にすることです。相手にとって読みやすい資料を作成するためには、以下の点に注意します。 # グラフの見せ方 - 自分が伝えたいことを基準に、適切な視覚化手法を選びます。 - グラフにする際は、形式や縦軸/横軸、目盛り、単位などの細部に気を配ります。 - 視覚化(グラフ)には、できるだけ慣例に則った方法を用います。 # 文字の表現 - 伝えたいメッセージに合わせた書体や色を使います。 - 文字情報だけでなく、アイコンなどを補助的に用いて視覚的理解を促すことも有効ですが、過度に利用しないよう注意します。 # スライドの構成 - 情報の順番に注意し、図表を情報が出てくる順序で配置します。 - スライドの意図や伝えたいことが分かるように、言葉を添えて補足します。 - メッセージと図表の整合性を保ち、強調したい箇所を意識します。 また、作成した報告資料や管理シート、会議でのプレゼンテーション、メールやチャットでのテキストコミュニケーションなど、様々な業務の場面でこれらのポイントを活用できると考えます。 特に今後意識したいのは、相手に「読んでもらえる」文章やスライドを作成することです。業務に取り組む際には、次の点を念頭に置くよう努めます。 - 自分が伝えたいことを相手に理解してもらうため、伝えたい内容を基準に適切な見せ方(視覚化)を選択する。 - 相手のリテラシーに合わせた言葉を選ぶ。 - 情報を探させない構成にする。 これらのポイントに注意することで、より効果的なコミュニケーションが可能になると確信しています。

データ・アナリティクス入門

データ分析とマーケティングが結ぶ新たな気づき

すべての学びは繋がる? 6週間の講義を振り返り、最も印象的だった学びは「すべての学びは結び付いている」ということでした。もともと興味を持っていた分析手法やその評価方法には多くの新しい発見があり、非常に刺激的でした。しかし、分析に基づいて仮説を立て、それを生かすためにはマーケティングの知識が必要だということに気付きました。過去に学んだことと今学んでいることがつながり、新しい視点が得られたこの体験は非常に刺激的でした。 マーケティングとデータ分析の相乗効果 知ったつもりでいたマーケティングに関するフレームワークをデータ分析で活用することにより、学びが独立したものではなく、結び付けることで価値が生まれるのだということを実感しました。この経験が一番の収穫だったと思います。 異動後の目標と実践 講座の受講期間中に営業部門から希望する企画部門への異動が実現しました。異動までにデータ分析やマーケティングに関する学び直しを行いたいと思っています。講座で学んだデータ分析の基礎的な手法は、現在の部署でも十分活用できます。まずは今の部署で可能な分析を行い、学びを実践に移したいと考えています。まずは営業部門の販売実績から現状を把握し、マーケティングのフレームワークを活用して今後取るべき打ち手について考え、同僚と意見を共有したいと思います。 新しい提案とその影響 異動するまでに今回学んだデータ分析手法を用いて、営業部門の現状分析やそれに基づいた仮説の立案を実施したいと考えています。現部署では経験や勘を重視する風潮があり、それ以外の判断基準がない状況です。たとえ私の提案が採用されなくても、新しい考え方の実例を示すことで変化のきっかけとなれば良いと思っています。そしてこの経験、特に反省点を次の部署で生かし、新しい環境でも様々なことに挑戦してみたいと思います。

クリティカルシンキング入門

問いが切り拓く未来の一歩

どの問いから始める? どのような問いを立てるかが、その後の取り組みを決定づけます。具体的に考えるべき内容、実現すべき点―すなわちイシュー―を明確にした上で、どのような取り組みを実施すべきかを検討することが非常に重要だと感じます。 具体例は何を語る? ある事例では、2000年代の大手飲食チェーンの実例が紹介されました。最終的には基本的価値の実現を目指した取り組みとなり、奇をてらう必要はなく、現状の経営視点から素直に導かれる施策が体験できました。 本質の問いは何? 本質を捉える問いを立てるためには、まず「問い」から始めること、そして自分の中でその問いを持ち続け、組織全体で共有することが大切です。さらに、クリティカルシンキングの第一歩として、今ここで答えを出すべき問い―イシューを特定することが求められます。問いを特定する際は、問いの形にする、具体的に考える、一貫して意識し続けるという点に留意する必要があります。 論理構築はどう進む? また、ピラミッドストラクチャーというフレームワークを活用することで、STEP1.イシューを特定する、STEP2.論理の枠組みを考える、STEP3.主張を適切な根拠で支えるという手順により、より明確な文章を作成する取り組みが可能となります。 手法の活用は適切? こうした手法を、新しいテーマに取り組む際にも生かし、現状や環境を正しく認識しながら次なる施策につなげていくことが重要だと考えています。実際、報告書などの文書作成においても、これらの方法論を実践することで、より明瞭で説得力のある内容になると感じました。 日常の問いはどんな? また、日常的にどのように「問い」を立て、第一歩を踏み出して実践していくかを考えることが、今後の課題であり、常に意識して取り組んでいきたいと思います。

データ・アナリティクス入門

仮説力で見える未来のカタチ

仮説検討は効果的? フレームワークを使って仮説を検討する重要性を改めて実感しました。自分の視点だけで考えると、異なる仮説が実は同じ意味を持っていたり、抜け漏れや重複が生じ、MECE(漏れなく、ダブりなく)にならないことがあると感じました。また、業務では自社の既存データを中心に扱っており、外部のデータと比較する機会が少ない点にも気づきました。一般的なデータにも注意が必要で、信頼性が低かったり数値が大げさに見せられるケースもあるかもしれません。こうした状況だからこそ、学んでいる知識を活かし、有効なデータと信頼できる情報源を見極める必要があると思いました。 動画から何を学ぶ? 先週のグループワーク後に視聴した関連動画で紹介されたさまざまなグラフや分析手法も非常に参考になりました。自分がこれまでなんとなく実施していた方法が当てはまる部分もあれば、これまで注目していなかった視点に気付くこともあり、改めて復習する意欲が湧きました。 実務で新発見は? 実務では、指示通りに同じグラフを作成することが多い中、自分自身でフレームワークを活用して仮説を立て調査することで、新たな発見につながる可能性を感じています。現在の職場では、これまでにない未来的な取り組みが多く、自社の過去のデータだけでは捉えきれない視点が必要だと再認識しました。大きな歴史的流れに沿った視点も、今後の改善に大いに役立つと考えています。 改善策の検証は? まずは、フレームワークを用いて「どの部分が改善され、会社の売上に貢献できるか」という仮説を立て、データの収集と検証に取り組みたいと思います。また、データだけに頼らず、職場の改善点や取り組みについても多角的な視点を持って検証することで、会社全体の業績向上だけでなく、自分自身の成長につながる発見があると期待しています。

「方法 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right