戦略思考入門

戦略的思考で広がる未来への扉

戦略的な人の思考法とは? 戦略的だと感じる人は、目の前のことをただ片付けるだけでなく、常に最終的な目標を考えています。その過程自体にも意味を見出し、冷静に状況を分析することで、限られた時間と資源を最大限に活用して最短・最速で対応する方法を見つけ出します。彼らは、ただ美しい計画を描くだけでなく、実際のビジネスに応用できる実践的な手法を持っています。 戦略的行動のメリットは? 戦略的に行動することのメリットは、他の工程や部署をより広い視点と高い視座で理解し、行動できることです。これは信用や職場での評価を高め、昇進のチャンスを広げることにつながります。また、成功に近づくことで、ミスを減らし、スケジュールを確実に進行させることができます。さらに、失敗経験も次に活かすことができるのです。 戦略的に行動するためには、先を見据えてゴールを明確にし、何をやり何をやらないかを判断する能力が必要です。さらに、自分ならではの独自性を磨き、他と差別化することも大切です。 自分の成長に必要なスキルは? 私自身、これらを学びながら、ブレずに実現可能なビジョンに基づいて計画的に行動できるようになりたいと考えています。そのためには、自分の視野を広げ、定量的な思考法や知識を増やしながら、周囲を導くカリスマ性を身につける必要があります。 「最速・最短」とは本当に必要か? 特に重要なのは、結果から逆算して思考する力を強化し、スケジュールだけでなく戦略的な計画を立てることです。事業計画を立案する際には、関連部署との調整、売上予測や売上管理、メンバーの役割分担などを詳細に設定し、また各分析手法を使って有意義な行動に転換することで、プロジェクト全体の戦略的な推進が可能となります。 今回特に意識したいのは、「最速・最短」を心に留めながらも、自己犠牲を必要とする状況においては、それが本当に戦略的な必要性があるのかを常に考え、行動に反映させることを習慣化することです。

リーダーシップ・キャリアビジョン入門

理論で実現!やる気UPの秘訣

理論はどう活かす? 今回学んださまざまな理論を通じて、モチベーションの向上方法について再確認することができました。業務の中で実践している手法は経験に基づくものですが、マズローの欲求の五段階説やハズバーグの動機付け・衛生理論といった理論的枠組みに沿って現状の要因がどの位置にあるのかを明確に把握することで、より高い効果が期待できると感じました。 まかせ方はどう? また、実行段階での「まかせ方」については、干渉を最小限に抑える努力や、プロセスどおりに実施できているか、当初の想定通りの結果が出ているかを定期的にフォローする点が十分でなかったと認識しました。各地で業務を進める中、つい口を出してしまったり、細かなフォローが不足していたと実感しました。 フィードバックはどう? さらに、効果的なフィードバックについても、情報伝達はできていたものの、相手が行動を立て直すための支援となるフィードバックが不十分であったと理解しました。 会話はどう見える? 日常のコミュニケーションでは、相手の様子や言動にしっかりと注意を払い、変化に気付けるよう意識を高めたいと考えています。また、定期的な面談や業務の振り返りの機会を活用し、本人に気付きと学びを促すフィードバックを行うことで、より効果的なサポートを実現したいと思います。 動機づけはどう? これらの取り組みを通じて、職員一人ひとりがモチベーションや仕事への動機づけを深く理解し、意欲的に働ける環境を整えることで、強い組織づくりに必要なエンパワーメント力を養っていきたいです。 未来はどうなる? 今後は、面談や振り返りの際に理論をもとに傾向を分析し、各人が意欲的に取り組める業務の選定や依頼の方法を検討することも視野に入れています。状況や体調などの変化を踏まえ、まずは相手の理解を深める「聞き手」としての役割を大切にしながら、気付きと学びを促す機会や能動的な実験ができる環境づくりに努めます。

データ・アナリティクス入門

検証の軌跡が未来を変える

原因って何が影響する? 問題の原因を追究するためには、対象となる現象が起こるまでのプロセスを細かく分解し、各段階の要素を把握する手法が有効であることを学びました。また、複数の可能性を網羅的に洗い出し、根拠に基づいて最適な解決策を絞り込む方法も身に付けることができました。 検証はどのように進む? 仮説検証の手法としてのA/Bテストにおいては、検証対象の効果を正確に判断するために、できる限り条件を揃えた同一環境下で比較することの重要性を再認識しました。これにより、得られる結果がより信頼性のあるものになると実感しました。 なぜ離脱が発生する? さらに、ユーザーの利用過程をプロセスに分解し、どの段階で離脱が発生しているのかを探るファネル分析についても、具体的な事例を通じて理解を深めることができました。一方で、実際にA/Bテストの結果をもとに今後の方針を決定する際、テスト実施自体に対する関係者からの合意や納得を得る難しさを改めて感じる機会もありました。 分析のポイントは? そこで、What、Where、Why、Howの各ステップに沿って分析を進める重要性を認識しました。特に、WhyとHowの部分にスムーズに入れるよう、まずはWhatとWhereについて関係者全員で共通認識を持つことが不可欠です。また、総合演習では「満足度が下がっている」という結果だけに飛びつかず、どこに問題があり、なぜそのような状況に至ったのかを分解し、分析・判断することの大切さを学びました。 具体策はどうすべき? 具体的には、以下の点が重要です。まず、What、Where、Why、Howの各段階に沿って、問題を丁寧に分解すること。次に、不正解の仮説は存在しないという前提に立ち、考えられる仮説を2~3案以上、網羅的に検討する癖をつけること。そして、A/Bテストやファネル分析を通じて仮説の正否を検証し、施策の精度向上につなげることが大切だと感じました。

データ・アナリティクス入門

データの見方が変わる瞬間

基本思考をどう整える? 今回の動画や演習を通して、従来は何となく基本的な見方でデータを眺めていた自分に対し、根本的な考え方の基礎を再認識することができました。表面的な比較だけでなく、意図的にデータを加工して比較することの重要性を実感しました。 数字と視覚、どっちが正しい? また、他のデータと比べる際には「数字に集約して捉える」ことや「目で見て捉える」視点が必要だと認識しました。一目で把握できる程度のデータ数であれば十分ですが、ある程度の規模がなければデータの価値は向上せず、大量のデータを扱う際には加工する手順が不可欠だと理解しました。単純に平均値を見るのではなく、値の分布やばらつきに注目することも大切です。 仮説とデータの整合は? さらに、平均値やばらつきを基に、大量のデータを加工し、ビジュアル化・グラフ化を行うことで仮説と照らし合わせ全体を俯瞰する手法の重要性を再確認しました。分析のプロセスでは、まず目的や仮説を明確にした上でデータの収集が行われ、その後、仮説の検証や分析を繰り返すことが意義のあるものだと改めて理解しました。 各種平均の使い分けは? また、データの捉え方においては、代表値としての単純平均、加重平均、幾何平均、中央値や、散らばりとしての標準偏差があり、それぞれを目的に応じて適切に使い分けることが重要であると感じました。まずは自分なりの仮説やストーリーを意識し、必要なデータを整理してから分析に取り組むことが大切です。さらに、データのビジュアル化にも注力し、目で見て整理する方法にチャレンジしていきたいと思います。 未来のデータ戦略はどう? 今後は平均値やばらつきという視点を重視しつつ、加重平均や幾何平均も意識的に活用していきたいと考えています。また、標準偏差については、効果的に使用できる場面を見極め、業務の中での活用を目指すとともに、ツールの扱いについても理解を深める必要があると感じました。

データ・アナリティクス入門

仮説と問いで広がる学び

結論と問題は何が違う? ケーススタディを通して、私は結論の仮説と問題の仮説の違いについて学びました。これまで結論と問題の仮説を意識することはほとんどありませんでしたが、結論の仮説は答えを先に仮定してから分析を進める手法であり、問題の仮説は問題の本質や真因に迫りながら「なぜ?」と問い続ける流れであると理解するようになりました。 考えの整理はどうする? また、仮説を立てる際には、自分の考えを整理し、納得感や他者への説明力を高めるために、網羅性が非常に重要だと実感しました。誰が読んでも理解しやすいようにフレームワークを活用することで、従来の方法に比べ、思考が整理され、見やすく理解しやすいアウトプットが得られると感じています。 時間軸の重要性って? さらに、課題を考える際には、過去・現在・未来という時間軸で捉えることが重要であると学びました。問題がいつ発生しているのかを明確にすることで、現在の状態を正確に把握し、なぜその状況になったのか過去を振り返り、将来の理想像に向けて現状で何をすべきかを考えることで、より納得のいく議論ができると感じています。 企画で何を考える? 通常の業務において新商品や新機能を企画する際は、価値(魅力)とコストのバランスを考慮します。コストを削減する方法を検討する過程では、複数の仮説を立てるとともに、迅速に検証を行いアウトプットに結びつけることが求められます。うまくいかなかった仮説に対しては、なぜ失敗したのかをしっかり確認し、次につなげることが大切です。 国際展開の特徴は? また、現在の業務では、同じような製品を複数の国で展開しています。各国の特徴や強み・弱みをフレームワークを用いて整理し、そこから抽出した課題に対して改善策をいくつかの仮説として立て、検証を実施しています。このプロセスをグループ内で共有することで、より広い視野での理解が進み、全体のパフォーマンス向上につなげています。

戦略思考入門

アイデア深掘りで差別化を実現!

なぜアイデアを深掘り? 差別化を図るためには、容易に思いつくアイデアに満足せず、しつこくアイデアを深掘りして考え続ける姿勢が大切です。また、自分たちの業界だけでなく他業種の成功例や差別化戦略から新たな視点を得ることも有効です。さらに、チーム全員で広くアイデアを出し合い、質の高いものへと昇華する、まさに「量が質に転じる」という方法を活用することが求められます。これにより、ライバルとの差別化を図り、独自性を確立することが可能となります。 最新技術で業務革新? 私は、社内のバックオフィス業務全般を担当しており、競合するライバル会社に勝つための差別化戦略を考えることが難しいと感じています。そこで、バックオフィス業務として差別化施策といえるポイントを以下にまとめました。まず、他部門より進んだテクノロジーの導入と活用があります。バックオフィスがAIやRPA、BIツールなどの最新技術を活用することで、業務効率やデータ活用能力において他部門と差別化を図ることができます。これにより、組織内で先進的な位置づけを確立することが可能です。 何がイノベーションを動かす? 次に、イノベーション推進の役割を担うことが考えられます。新しいテクノロジーや手法を導入し、その効果を実証することで、社内全体でのイノベーションをリードすることができます。このようにして、自部署は他部署に先駆けて「イノベーションの推進役」として組織内で差別化を図ることができます。AIツールやRPAツールの浸透度合いがまだ低い中で、これらを駆使して業務効率を飛躍的に向上させたいと考えています。 具体策は何だろう? 具体的な行動としては、AIの活用実績を知見として蓄積し、そのナレッジを教育や研修で全社にフィードバックします。営業部門では旧来の手法から脱却できていないため、様々な階層の研修にあわせて効果的なAI活用による効率化を行っていく予定です。

デザイン思考入門

現場の声で磨く課題解決力

共通課題は何だろう? 店舗のオペレーション課題解決においては、単に会議での発言や市場視察の情報だけを頼りにするのではなく、どの店舗でも共通する課題なのかどうかを十分に確認して定義することの重要性を実感しました。 定量と定性はどうなる? そのため、普段から実施しているアンケートなどによる定量分析と、ヒアリングや現場の観察を通じた定性分析を併用することを、これまで以上に意識していきたいと思います。特に、定性分析においてはコーディング手法の活用をすぐに実践する所存です。 ペルソナはどう捉える? また、現状を把握するだけでなく、具体的なペルソナを特定し、ユーザーの感情にまで思いを巡らせることが大切だと感じました。ペルソナをいくつか明確に意識することで、本当に解決すべき課題が何か、その根本的な原因は他にもないかと前提を疑いながら多角的に考える習慣が身についてきました。 課題定義は進む? 今後は自分一人にとどまらず、周囲のメンバーも巻き込みながら課題定義を進めていくつもりです。課題定義のフェーズでは、①問題の本質を捉える、②洞察の整理と可視化、③顧客課題仮説の作成、④ユーザー中心の視点の維持、⑤検証と改善という5つのポイントが重要だと感じました。 潜在課題に気づく? 中でも、カスタマージャーニーマップを活用する点と、顧客課題仮説を作成する際にシンプルで明確な課題文を構築する方法に大きな気づきを得ました。カスタマージャーニーマップはユーザーの行動だけでなく感情の流れにも着目することで、潜在的な課題を浮き彫りにしますし、明快な課題文はまだ気づかれていなかった潜在的な問題に気づく手助けとなります。 アウトプットは十分か? 最後に、ある講師の「学びの深さはアウトプットの量に比例する」という言葉が心に響きました。今後も実務を通じて、積極的にアウトプットを行いながら学びを深めていきたいと思います。

戦略思考入門

データで切り拓く挑戦の未来

客観データで説得? 今週の学習では、課題解決において感情論ではなく、客観的なデータに基づく論理的な分析と、それを「人に伝わるように」表現することの重要性を実感しました。タクシー業界のデータ分析を通じ、漠然とした問題を具体的な数値で把握し、多角的に解決策を検討するプロセスを学び、複雑な状況下でも本質を見抜き、説得力ある提案につなげる力が不可欠であると再認識しました。 外食業界で活かす? さらに、今回の学びは外食業態での仕事に直結すると感じています。従来は感覚に頼っていた新メニュー開発や既存メニューの見直しを、POSデータや顧客アンケートを活用して売上低迷の原因と潜在ニーズを客観的に特定するアプローチに変えます。たとえば、特定の時間帯に売れ行きが低迷しているメニューがあれば、その原因を徹底的に追求し、価格や食材、提供方法の見直しなど、多角的な対策を講じることで収益性向上を目指します。 集客戦略はどう? また、店舗の集客戦略にも学んだ手法を応用できます。近隣の人口構成や競合店の情報を分析することで、ターゲット顧客を明確にし、若年層にはSNSプロモーション、高齢者層にはデリバリーサービスといった、ニーズに即した戦略的な広告・宣伝活動を展開することが可能となります。 実践計画の工夫は? これらの学びを実践するため、以下の具体的な行動を計画しています。まず、毎日終業後にPOSデータをメニュー別、時間帯別、客層別に分析し、特に大きな差異が見られる点についてその原因を徹底的に追究する習慣をつけます。次に、週に一度、近隣の競合店のメニュー構成や価格、プロモーション情報をオンライン等で確認して、自店との比較分析を行います。さらに、月に一度、主要メンバーと共に売上データや競合情報を共有し、論理的な意見交換を通じてデータに基づく課題解決策を議論する「課題解決ランチミーティング」を実施します。

クリティカルシンキング入門

結論から生まれる説得力

伝えたい理由は何? 「伝えたいことの理由付け」について、複数の支え方(すなわち根拠や裏付け)が存在し、その中から目的や相手に合わせた最適な方法を選ぶことが重要だと実感しました。以前は理由付けには包括的な視点が必要だと考えていましたが、共通する要素に注目し、分類することで、状況に応じた適切な支え方ができると気づきました。その結果、説得力が増し、相手も理解しやすくなると感じています。 ピラミッド構造はどう? ピラミッドストラクチャーは、結論や主張を頂点に置き、その下に根拠や理由を階層的に配置する手法です。この構造により、まず結論を冒頭で示すことで読み手はすぐに要点を把握できます。次に、体系的に並べられた根拠によって論理的な納得感が生まれ、さらに情報の階層化が、必要に応じた詳細な説明を可能にし、理解を促進します。 提案の極意は何? 今後は、提案書や報告書の作成時にピラミッドストラクチャーを意識して取り入れる予定です。たとえば、経営層への報告では結論と効果を明確に示し、意思決定を支援する文書を作成します。また、顧客への提案では、導入メリットを冒頭に示し、信頼性のある根拠や事例で裏付けることで、納得感を高める工夫を行います。さらに、社内の説明資料では、読み手の理解度に応じた情報の詳細さを調整し、効率的なコミュニケーションを図ります。 要点はどう見直す? これまでの文書作成では、情報を広く網羅するあまり、要点が見えにくく冗長になってしまうことがありました。しかし、今後は「伝えるべきことを、伝わる形で」届けるため、結論から始まる構成と、その根拠をしっかりと示す論理性の強化に努めていきたいと考えています。 説得力をどう磨く? これまでの業務の中で、特に効果的だった理由付けはどのようなものでしたか。また、説得力をより一層高めるためには、どのような具体的なデータや根拠が活用できると思われますか。

クリティカルシンキング入門

対話が開く学びの扉

どうして一致しなかった? 自分の問いと相手の問いが最初から一致していなかった経験から、相手と同じ視点で物事を捉えることの大切さを改めて感じました。最初の段階で「今向いている方向はこれだ」という確認作業をお互いに行うことは、対面でもオンラインでも重要だと実感しています。 変化、どう受け入れる? 私生活と業務のどちらにおいても、新しい変化を起こすことが求められる場面があります。変化を受け入れてもらう難しさを痛感する中、文章の伝え方やプレゼン資料の見せ方、さらには相手にとっての優先事項が何かを考慮したコミュニケーションが必要だと考えました。これらの学びを活かし、試行錯誤を重ねながらより良いアプローチを模索していきたいと思います。 本音、どう探る? プライベートでは、管理組合の会合で新しいテレビ受信方法への反対意見に対して、反対理由がコスト、番組内容、あるいは自分の意見を尊重してほしいという気持ちのどれに起因するのかを丁寧に探るよう努めています。相手との対話が尋問のようにならないよう心掛け、相手が抱える課題に寄り添うコミュニケーションを目指しています。 利用拡大の壁は? また、業務面では、部門内のDX推進プロジェクトにおいて新しいツール導入後、初期の効果が見えたもののユーザー数の伸びが停滞してしまいました。当初はアーリーアダプター層には響いた手法でしたが、未使用のユーザーに同じ方法では届かないと感じています。そこで、一方的にアピールするのではなく、相手の現状や課題をしっかりと聞き出す姿勢に変えることで、各チームが抱える具体的な課題を明らかにしようとしています。 伝え方の工夫は? わかりやすいプレゼン資料やシンプルな文章であっても、相手が心を閉ざしてしまっていては効果が得られません。相手に話を聞いてもらうためには、どのような工夫が必要なのか、今後も考え続けていきたいと感じています。

データ・アナリティクス入門

データで読み解く新たな発見の旅

代表値の意義は何? 平均値や中央値は、データを簡潔に理解するための「代表値」として便利です。これらはデータ全体をおおまかに把握するために使用されます。しかし、平均値はデータのばらつきや偏りを考慮しないため、標準偏差などの指標を使ってそのデータの分散を理解することも重要です。ヒストグラムはデータのばらつきをしっかり理解するのに役立ちますし、円グラフは構成要素が占める割合を視覚的に捉えるのに有効です。特に、データに際立ったばらつきがある場合は、その点に焦点を当てて分析することで問題を深堀りしやすくなります。 計算方法の違いは? 代表値の計算方法には、単純平均や加重平均、幾何平均、中央値など様々な種類があります。単純平均は全データの合計を個数で割ったもの、加重平均は各数値に重みを付けて算出するもの、幾何平均は冪根を使って計算します。特に平均値が極端な外れ値の影響を受けやすい場合には、中央値を使用するのが適しています。 標準偏差の役割は何? また、データの散らばりを理解するために標準偏差も重要な指標です。標準偏差は、データの各値との差の二乗の平均として計算され、データのばらつきを数値で示します。さらに、標準偏差の68%ルールや95%ルールは、データの大部分がどの範囲に収まるかを示し、これも理解を助けます。 業務整理にどう活かす? このような統計手法は、顧客の業務を整理する際に役立ちます。例えば、どの業務パターンを外れ値として除外すべきか、それがなぜ合理的なのかを論理的に説明できれば、業務要件をシンプルにするのに貢献します。加重平均を使用して、一部のケースでのみ発生する業務パターンを無視しても影響が小さいことを示したり、幾何平均で業務量の年次増加率を算出し、将来のシステム投資を提案することもできます。このようなシナリオが他にもないか、引き続き検討していきたいと思います。

データ・アナリティクス入門

データ分析でビジネスの謎を解く方法

売上判断で何を比較すべきか? 売上の良し悪しを判断するとき、「大きい」「小さい」「高い」「低い」などの表現を用いる場合、必ず何と比較しているかを示すことが重要です。この比較によりデータの加工を行うと、さらに新たな視点が見えてきます。 代表値とデータ分布をどう見る? まず、データの特徴を一つの数字に集約して捉えます。代表値や平均値を見るとき、その数字だけで判断せず、データの分布も合わせて考慮する必要があります。 データ視覚化の重要性は? 次に、データを視覚的に捉えることが重要です。データをグラフ化、ビジュアル化することで、データ間の関係性を視覚的に捕えることができ、特徴の把握や解釈、仮説立案が容易になります。目的に応じて適切なグラフ(円グラフやヒストグラムなど)を選ぶことで、比較・分析がしやすくなります。 数式で関係性を捉える方法は? さらに、数式を用いて関係性を捉える方法もあります。代表値として単純平均、加重平均、幾何平均、中央値、そして散らばりを示す標準偏差を利用します。単純平均だけでなく、他の代表値もしっかりと使いこなすことが求められます。 仮説検討で何を探る? これらの手法を用いて数字を算出し、比較することから仮説を立て、傾向や問題点を見つけるには、個人の経験や知識、世間の動向やトレンドを把握することが重要です。月次報告書にこれらの比較方法を取り入れ、仮説の立案までをセットにし、分析報告をまとめることが目標です。 来週火曜日の報告までにすべきことは? 来週火曜日に役員へ報告する資料が必要です。この資料は、単に実績を表としてまとめるだけでなく、そこから読み取れる傾向も分析し、上司に報告する内容にしたいと考えています。仮説については、実際の現場の責任者とも会話し、その仮説にどれほどの差異があるかを検証し、次回以降の仮説検討の際に参考にしていきます。

「方法 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right