クリティカルシンキング入門

数字を超えた視点の冒険

数字の見方は本当か? 数字をただ見るのではなく、視覚化やグラフ化することで、より多角的な意味を見出すことができると実感しました。また、MECEの基本的な考え方についても理解が深まり、モレやダブりを意識することの重要性を学びました。「本当にそうか?」と問いかけるプロセスが、短絡的な結論を避ける上で大切だと考えます。 疾患領域はどう選ぶ? 新規薬剤や新たな事業領域の開発を考える際、まずは対象となる疾患領域を絞り込む必要があります。さらに、その絞り込んだ後のポピュレーションや、疾患の重篤度、患者数、事業性、競合環境など、さまざまな切り口からニーズの有無を検証することが求められます。 課題分解は的確か? また、課題をどのように分解し、分解が適切に行われているかを意識することも重要です。一人で考え込むのではなく、メンバー間で様々な視点を共有し、切り口のアイデアやモレ・ダブりの有無を話し合いながら進めていくことが効果的だと感じました。

クリティカルシンキング入門

伝える力を磨く!実践のコツ

ビジュアルはどう伝わる? ビジュアルの効果は、単なる文章の補足に留まらず、適切な図やグラフを用いることで、相手により確実に情報が伝わると感じました。また、ビジネスライティングの一部を学ぶことで、如何にして相手に読んでもらえる文章を工夫すればよいのか、そのポイントを捉えることができました。 文章内容はどう伝える? これまで、社内会議でのプレゼンテーション、日々のメール文章作成、さらには稟議書や報告書の作成時において、文章が長くなったり、主題が曖昧になりがちだと実感していました。今後は、伝えたい内容を明確にした資料や文章作成を意識していくつもりです。 資料の見直しは? また、作成した資料や文章が独りよがりにならないよう、自ら俯瞰して体裁を整える必要性を実感しました。具体的には、明確に伝えたいポイントを文頭に配置するとともに、視覚効果を加えるなど、読んでもらう・見てもらう側の立場に立った工夫を重ねていこうと考えています。

データ・アナリティクス入門

振り返りで未来を切り拓く

どんな成長を感じた? 振り返りの重要性を再認識しました。6週間の講座を通じて様々なことを学び、その中で自分が何を習得したのか、どんな在り方を目指すべきか、そしてそれを実現するために何が必要かを改めて考える良い機会となりました。 なぜ振り返るのか? 日々の業務に追われる中、プロジェクトや定例の業務、または期の区切りといったタイミングで意識的に振り返りの時間を設けることが大切だと感じます。学びにとどまらず、業務全体においても振り返りの習慣を取り入れたいと思います。 目的や行動の見直しは? 振り返りを実施する際は、まず目的の見直しを心がけることが必要だと考えます。引き継いだ業務はそのまま続けがちですが、業務の目的を明確にし、その対応が適切であったか、計画や行動を再確認して次のアクションに繋げることが求められます。また、自分自身の評価タイミングでもあるため、前期の振り返りと次期の目標について、速やかに見直していきたいと思います。

クリティカルシンキング入門

ディスカッションで広がる新たな視点

全体像はどう把握する? 全体像を正確に把握することで、モレなくダブりなく切り分けることが重要であり、他者とのディスカッションを通じて多様な視点からの意見を得ることも大切だと感じました。また、私は直感的に切り分けを考える傾向があるため、モレやダブりを意識した切り分けを心掛けたいと考えています。 学生分析はどう進める? 採用活動においては、セミナーやインターンシップに参加した学生を、学部学科、性別、院卒大卒で分析することの重要性を感じました。特に、参加理由や志望業界で切り分けるとダブりが生じる可能性があるため、注意が必要だと思いました。 切り分け方はどう変わる? 分析を行う際には他者とのディスカッションを行い、ヌケモレダブりのない切り分けを複数考慮して分析を行うのが適切であると感じました。また、ヌケモレダブりがあるとしても、自分自身で多くの切り分け方を考えることは、クリティカルシンキングを鍛える良い機会になると感じます。

クリティカルシンキング入門

一緒に探そう!抜け漏れゼロのデータ分析

どんな視点で見る? データを分析する際は、見る切り口によって見え方や分かる内容が変わるため、まずは様々な視点から状況を把握することが重要です。全体の傾向が見えた段階で、さらに細かい視点でデータを掘り下げ、分析を進めます。また、切り口に抜け漏れがないように設定することも求められます。 傾向はどう見抜く? 日々の物量の傾向を把握することで、必要な労働力(作業員や作業時間)を正確に計算できるようになります。業務改善を目的としたデータ分析では、どの作業がボトルネックとなっているのかを見極め、適切な改善アプローチの方向性を定めることが必要です。 抜け漏れはどう検証? 具体的な取り組みとしては、まず課題を漏れなく分解し、その状態を上司や同僚に確認します。もし抜け漏れがあればアドバイスを受け、補完の後、更に細かい分解を行うといったプロセスを実践しています。こうした取り組みは、MECEの考え方を意識しながら行う練習として効果的です。

データ・アナリティクス入門

データ分析で差を生み出す4つの秘訣

顧客分析で何を重視する? 顧客分析や市場分析を行う際、まず「分析とは比較すること」であり、目標と仮説をきちんと立てることが重要だと学びました。定性的な分析に偏りがちで説得力を欠くことがあるため、尺度や数値の性質を正しく理解して、しっかりと分析・評価・考察を行いたいと思います。 他社比較で成功するには? 今後、様々な施策を行う時に他社比較やABテストを実施する機会があると思われますが、その際には、「比較」「目的」「仮説」「考察」を確実に具現化してから各数値の分析・評価を行うことに努めたいと考えています。メンバーや上層部にも十分な納得感を持って進められるようにしたいです。 数値分析の心構えは? そこで、まずは様々な数値を扱う際に「比較対象の妥当性」「目的」「仮説」「考察」の4つを常に念頭に置いて仕事に取り掛かるよう心がけています。また、分析方法についても数値の性質を見極めつつ、適切に分析・評価を行いたいと考えています。

データ・アナリティクス入門

学生退学率を下げるための分析法を学ぶ

比較で分析を深めるには? 「分析は比較」という考え方が非常に印象に残りました。単に分析対象を見るだけでなく、他と比較することでその状態を分かりやすく確認できます。また、比較の際に「目的」や「分析に必要な要素」を考慮することで、ぶれない分析が可能になると学びました。 学生の退学率にどう対策する? 私は大学で勤務しており、学生データの分析を頻繁に行っています。特に「入学した学生の退学率をどのように防ぐか」という大きな課題が常にあります。この問題を解決するためには、問題を適切に切り分けて、それに対する適切な施策や提案を行う必要があると感じました。 退学率低下の具体策は? 具体的には、「学生の退学率を低下させる」といった目標が定まっているので、まずはその問題を要素ごとに分けて考えます。例えば、退学率の過去の推移を確認し、変動が大学内部の問題によるものなのか、それとも外部要因によるものなのかを区別することから始めます。

クリティカルシンキング入門

イシューで迷わないための3つのステップ

イシュー特定の重要性とは? イシューを特定することの重要性と、その留意点やステップを学ぶことができました。 イシュー特定時の留意点は? まず、イシューを特定する際の留意点として、以下のことが挙げられます。 - 問いの形にする - 具体的に考える - 一貫して抑え続ける 問いを通じた方向性の共有 社内の打ち合わせでは、しばしば方向性を見失うことがあります。そのため、問いを立てて組織全体に方向性を共有し、一貫性を保つことが重要です。常に「問いは何か」を意識し、目立つ形で示す工夫をしていきたいと考えています。 イシューを立てる訓練法は? また、イシューを立てることを日々意識し、訓練を積むことも必要です。自分だけでは正しいイシューか判断がつかない場合は、上司や同僚にフィードバックを求めるようにします。そして、書籍を読んでイシューの立て方を学び、それを実際にアウトプットすることでスキルを向上させていきたいと思います。

クリティカルシンキング入門

イシュー設定が成功への鍵と実感した学び

イシューを具体化するには? イシューの設定が課題解決において重要であることが身をもって実感しました。特に、問いを明確かつ具体的に設定し、全体の前提や認識をそろえることが不可欠です。また、イシューを設定した後も、常にその意識を持ち続けることが大切です。議論や思考が途中でそれないようにするためです。 営業マネジメントにおける効果的なサイクル 営業マネジメントにおいては、数値達成や業績向上のために、適切なイシュー設定と、その解決策を検討・実施するサイクルが求められます。今回学んだ内容は、自チームのイシュー設定から数値改善まで、実践で試してみる価値があると感じました。 データ活用の力をどう身につけるか? 課題解決に際して何をイシューとするのか、これまでの数値データを活用して見極める力を習得したいと考えています。そのため、改めてデータを整理し、ピラミッド・ストラクチャーを使って、イシューの書き出しと整理を進めていきます。

データ・アナリティクス入門

比較で見つけた戦略のヒント

同条件で比較する? 分析とは、同じ条件下での比較を行うことだと思います。たとえば、「Apple to Apple」の視点で比較を行うことで、分析の目的やゴールが明確になり、結果の精度も向上します。また、分析を進める際は、仮説を立てることで、目的外の迷いに陥らずに進められると感じています。 ブランディングはどう? 現在、私はプロダクト開発とコンテンツ企画・運営に携わっており、いずれも競合が存在する中で、自社のブランディング戦略を考える必要があります。ただ、現状ではプロジェクトオーナーの感覚や経験に頼る部分があり、より現実的かつ客観的な視点を取り入れる余地があると感じました。 課題整理は進んでる? そこで、まずは各プロジェクトの目的とゴールを再整理し、現時点での課題を明確にすることが重要だと考えています。その上で、適切なフレームワークやツールを活用した分析を行い、より精度の高い戦略策定を目指していきたいと思います。

戦略思考入門

イシューで見つける経営のヒント

目的は何に注目? そもそも、何がイシューなのか(=目的は何か)を明確にすることが最も大切です。目的を見失わず、本質を捉えた上でスタートとゴールを意識することで、その後の議論が無駄にならず、順序だてた考察が可能となります。また、具体的方法論を学び、フレームワークに沿って考えることで、抜け漏れを防ぐことができると実感しました。実践を重ねることが成長への鍵であると感じています。 経営戦略はどう見る? グループ会社の経営においては、今回学んだ知識が大いに役立ちました。各社の経営戦略について話を伺う際、学んだ観点から適切な質問をすることで、相手企業の意識向上につながり、グループ全体の成長に寄与できると考えています。さらに、各社とのコミュニケーションにあたっては、あらかじめ質問内容を整理し、的確に問いかけることが重要だと感じました。このような学びの場を、グループ会社への研修メニューの一環として提供するのも一案かもしれません。

データ・アナリティクス入門

データでつかむ共感と納得

データ分析の意義とは? 「分析とは比較なり」と分かっていても、その意味を他の人に伝えるのは別の課題です。結果的に、データ分析の意味とは何を目的にし、どこに活かすかであると改めて実感しました。また、適切なデータ選びと結果の見せ方も理解に大きく影響を与えることを痛感しました。 分析結果をどう伝える? これまでのデータ分析は、自分が次の戦略を考えるために、自分が理解することを前提にしていました。しかし、考えたプランが良くても、納得や共感を得られなければ意味がありません。多くの人に理解される分析を心掛けるべきであると感じています。 経営戦略に重要なデータ選び データ分析のプロセスを含めて、しっかりと説明できることが重要な前提です。正しい経営戦略を考えるためには、どのデータを重視し、補足できるデータを選ぶかが鍵であり、会社の進むべき方向性を理解してもらうために、方向性を一致させる納得感の高いアウトプットを意識します。

「適切」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right