デザイン思考入門

お客様起点で描く学びの未来

アイディアは何故大切? 思いついたアイディアは、すぐに書き留めアウトプットすることで、第三者からの反応や意見を取り入れ、改良改善に繋げることが大変有効だと感じました。その際、AIの活用も新たな視点を提供してくれる点が参考になりました。 顧客視点はなぜ重要? また、自分たちが売りたいものを考えるのではなく、まずターゲットとなるお客様が抱える課題に目を向け、自分たちの商品がどのようにその課題にアプローチできるかを検討する「お客様起点」の視点が重要だと実感しました。目先の業務効率にとらわれず、各業務の目的や影響先を広い視野で捉えることが、より効果的な取り組みへと導くと感じています。 どう選ぶべき管理ツール? 現在、顧客管理ツールの見直しを進めています。数ある提案の中から最適なものを選ぶためにも、まず自分たちが目指すべき姿やゴールを改めて確認し、希望やアイディアは制限せずに協力先へ積極的にアウトプットすることが成功の鍵だと感じました。今後も引き続き、より良い改善に努めていきます。

リーダーシップ・キャリアビジョン入門

理論と実践で拓くやる気の秘密

基礎理論をどう捉える? 今回の学びとして、モチベーションとインセンティブの関係性について理解が深まりました。具体的には、マズローの欲求5段階説やX理論・Y理論、さらには動機付け・衛生理論といった基礎的な理論を踏まえ、相手のモチベーションを的確に理解することの重要性を再確認しました。 経験をどう活かす? また、コルブの経験学習モデル(具体的経験、内省的観察、抽象的観察、能動的実験)を意識することで、実体験からの学びを最大限に引き出す方法にも気づくことができました。今後は、周囲の人々のモチベーションの源泉を把握するために、コミュニケーションを重ねながら、効果的な働きかけを模索していきたいと考えています。 振り返りの意義は? さらに、業務の振り返りの機会を定期的に設けることで、単なる数値だけでなく、その背景や考え方についてもチーム内で共有するよう努めます。このプロセスを通じて、別の案件にも応用可能なノウハウや自身の持論を整理し、より実践的な成果に結び付けていければと思います。

デザイン思考入門

現場の声がカタチにする未来

どんな改善アイデアを出す? 総務として社内の視点に偏りがちな中、実際の業務に携わる姿を観察し、自分自身が可能な範囲で実践しながら、現場の声を取り入れて改善のアイデアをまとめたいと考えています。 現場の状況はどう見る? オフィスエリアの使い方については、上層部の意見に依存すると個人の主観や偏見に左右されがちです。そのため、オフィスフロアの各エリアで実際に業務を行い、現場の状況を確認しながら検討を進めたいと思います。一方で、Wモニターや空気清浄機など、必要な物の取捨選択については様々な意見が出る中で判断が難しい部分もあるため、慎重に選定を進める必要があります。 デザイン思考はどう捉える? また、デザイン思考に関しては正解がなく、最終的な答えをイメージするのが難しいと感じました。現場の意見をまとめても個人の感想にとどまる部分があり、本当に市場に求められているかどうかは実際に作ってみないとわからないため、会社として新しいものを作り続ける体力が必要だと実感しています。

データ・アナリティクス入門

目的再確認で磨く鋭い分析

計画の反省点は? これまで計画的な勉強をせずに分析業務を進めてきましたが、これまでの経験を体系的に整理できたと感じています。 比較検討する意味は? 特に印象に残ったのは、目的と比較対象を再確認することで、分析の内容がより鋭くなった点です。どの手法や見せ方を選ぶかは、結論を導き出しほかの人に共有する上で重要であり、データに応じた適切な手法の選択が求められます。 共有の大切さは? 今後は、何を目指し何と比較するのかを具体的かつ明確にし、チーム内でしっかりと共有することを徹底していきたいと考えています。これにより、分析結果がより精度の高い仮説検証に繋がり、プロセス全体の質が向上すると思います。 挑戦の意義は? 具体的には、フォローアップや分析の都度、目的を直接再確認すること、目指すべきものと比較対象をはっきりさせた上で最初にチームと確認し合うプロセスを重視しています。また、習得した分析手法を活かし、普段あまり使用しなかった方法にも意識的に挑戦するよう心掛けています。

データ・アナリティクス入門

データが映す問題解決の一歩

データ分析前の課題は? データ分析を始める前に、まず何が問題なのかを明確にし、その問題がどこで発生しているのかを確認することが重要です。分析の基本は分解にあり、目的に応じて様々な視点で切り分ける際、階層の違いに注意する必要があります。たとえば、where、why、howの順序を意識することで、基本に立ち返ることができます。 検証方法はどうする? 実際の業務においては、前月の業績(予実差)を基に問題を設定し、どこから問題が生じているのかを調べます。その際、自分の感覚だけではなく、データ上で本当にそう言えるかをしっかりと検証することが求められます。結果を先入観として捉えず、データに基づいた事実を導き出す姿勢が大切です。 振り返りの進め方は? 毎月の業績振り返りでは、改めて何が問題なのかを定め、具体的な発生箇所を探るプロセスを実践します。このプロセスを通じて、自身の直感が正しいかどうかをデータを用いて検証し、結果ありきでデータを選び出さないことを意識することが求められます。

データ・アナリティクス入門

学びを動かす日常の工夫

A/Bテストの意義は? A/Bテストの存在を知ることができ、業界ではそのような視点があまりなかったと感じました。また、week5はこれまでの中で一番難しく感じました。グループワークでAIの活用を聞いていたので、実際に少し取り入れてみました。動画で指摘されていたように、日常生活の中でこうした思考や手法を実践することが、身につけるために重要だと痛感しました。 転職と時間管理は? プライベートでは、転職の検討や残業削減の工夫、高額な商品の購入を見据えた時間の使い方について考えています。例えば、まずはどの仕事にどれくらいの時間がかかっているかを計測することから始める予定です。 研修と目標達成は? 一方、業務面では、研修担当として対応できる研修の分類や不足している部分を調査し、人材育成モデルとの紐づけを行いながら、研修内容の過不足を確認しています。また、年間計画の検討や売上目標達成に向けた具体的な行動計画の作成、社内合宿のアンケート結果の分析にも取り組んでいます。

データ・アナリティクス入門

代表値だけじゃない分析の魅力

代表値は何が最適? 代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、データの内容に応じて使い分けることが求められます。たった一種類の代表値だけを見てしまうと、判断を誤る可能性があるため、標準偏差も含め、データがどれだけ散らばっているか、もしくはまとまっているかといった視点も重要です。 データはどう分析? これまで契約データの分析では、各代表値をそれぞれの視点から確認し、常に多角的なアプローチをとってきました。これにより、一方に偏ることなく、データ全体の特徴をしっかりと把握することができました。CAGRを用いていた部分も、実は幾何平均の単年度バージョンとして捉えることができると考えています。 今後の判断はどう? 今後も、ただ一つの代表値に依存するのではなく、複数の指標を参照しながら、データ群にどのような特徴があるのかを判断したいと思います。そして、分析の目的に立ち返り、適切な分析手法やグラフの選択を通して、より正確な業務遂行を目指します。

クリティカルシンキング入門

課題解決の第一歩は全体像の把握

全体像を捉える重要性は? まずは全体像を捉えることが重要です。様々な視点から分解することで解像度が上がり、具体的な問題や、これまで気付かなかった問題にも気付けるようになります。このため、入ってくる情報に対して適切なフィルターを掛けて受信することが求められます。 問題解決のために何を心がける? 直面する問題に対して、まず全体像を知ることを心掛けたいと思います。その後、どのプロセスに課題や問題があるのかを分析していきます。この手法は、業務フローで全体を見える化し、どの工程でエラーが起きているのかを確認するのに適しています。頭の中でも自然にそれを描き、実践していきたいと考えています。 効率化のためにはどんな工夫が必要? 上記の通り、頭の中で全体像を想い描けるように、常に心がけることが重要です。その癖をつけるために、まずは紙などに書き出して頭の中を整理するように取り組んでみたいと思います。様々な業務の効率化を追求するために、MECEを活用していきたいと考えています。

アカウンティング入門

財務表で業務改善を目指す学びの旅

学んだことをどう活かす? 学んだ内容を振り返ることで、改めて自分のありたい姿や活用したい項目を確認することができました。特にオンライン授業では、他の受講生と意見交換をすることで、今後の学習に対するやる気も引き出せました。財務表に触れることへの苦手意識を克服し、ここで得た知識を実際の業務に活かしていきたいと思います。 財務表の確認が持つ意義 まず、自社の財務表を確認し、自分の活動がどのような影響を与える可能性があるのかを理解します。その中で改善できる部分を見つけ、業務として取り組むことを目指します。また、同業他社の財務表も確認し、自社との違いを理解し、良い部分を取り入れるための工夫を検討していきます。 月次での学びをどう定着させる? さらに、毎月自部署で共有される財務表を確認し、月ごとの特徴などを読み解けるようにします。他社の財務表もオープンになっているものを活用し、引き続き学習したことを定着させるために、継続して財務表に触れる機会を作っていきたいと思います。

データ・アナリティクス入門

数字が紡ぐ多角的な気づき

計算方法はどう違う? 他者による分析データでは幾何平均や標準偏差に触れる機会はありましたが、以前は計算式に苦手意識を感じていました。今回、単純平均や加重平均と併せて用いることで、データのばらつきや分布が視覚的に理解しやすいことを実感しました。また、分析結果同士の比較において要素が細分化され、読み解く幅が広がることも理解できました。普段目にするデータの背後には巧妙な仕組みが潜んでいることを再確認し、背景にある意図をより慎重に読み取ろうという意識が芽生えました。 部署ごとの傾向は? 担当しているダイバーシティ推進の取り組みでは、アンケート結果が全社的にポジティブな回答に偏る傾向が見受けられました。しかしながら、ネガティブな回答は特定の部署に偏っている可能性もあります。回答者の部署や性別などの属性に注目することで、異なる視点からの分析が可能になると感じました。こうした多角的な検証を通じ、部署ごとの業務特性やジェンダーバイアスなどの要因が明らかになることが期待されます。

リーダーシップ・キャリアビジョン入門

フォロワーを増やすリーダーシップの実践法

リーダーシップの本質とは? リーダーとはフォロワーを増やすことです。リーダーシップにおいては、フォロワーがリーダーの行動をしっかりと見ているため、行動は能力と意識の掛け算であると理解しました。この講座では、行動を起こすことの重要性を再確認しました。それに基づき、自分が目指すリーダー像を具体的にイメージし、実践に移せるよう学んでいきたいと思います。 業務にどう活かすか? 現在の業務では、相談を受けた際に対応することが主です。しかし、自ら積極的に行動を起こすことで、周囲に良い変化をもたらせると考えています。行動を見える化することで、業務効率の向上が期待できそうです。 コミュニケーションの新たな一歩 また、普段の業務では聞かれたことに対応する機会が多いですが、今後はより積極的にコミュニケーションを図りたいと考えています。問題の事前解決やメンバーの課題を早期に発見し、解決していくことを目指し、少人数の部署であっても、円滑な意思疎通を行える環境を整えていきたいです。

データ・アナリティクス入門

数字が語る学びの秘話

代表値の使い方は? 代表値の計算方法として、単純平均、加重平均、幾何平均、中央値のアプローチがあることを再確認しました。日常の業務では状況に応じて使い分けているものの、特に幾何平均は実際に計算する経験がなく、大変勉強になりました。また、データのばらつきを捉えるための標準偏差を使った比較も初めて試み、今後の分析に役立てたいと感じました。 分析結果はどう活かす? 研修成績やサーベイ結果の推移やばらつきを把握し、傾向や特徴を見出すために、今回学んだ代表値の計算方法やビジュアライゼーションが非常に有効だと考えます。まずは、データを確認する前に、点数が上昇している場合と下降している場合の仮説を立て、その上で属性ごとに単純平均を用いて比較を行います。さらに、人事制度などとの関連付けを行う際には、特定の部署の比重を増やす加重平均や、前々回分のデータを反映した幾何平均を導入することで、目的に合った多角的なアプローチを実現し、仮説の検証や次の分析ステップへとつなげていきます。
AIコーチング導線バナー

「確認 × 業務」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right