マーケティング入門

マイナスをプラスに変える選ばれる秘訣

売れない理由って? 今回の学びを通じて、「売れない理由」を徹底的に探る思考法の有用性を実感しました。これは、マイナス要素を分析し、プラス要素に転換するための視点であり、単に「何かを売る」場面に留まらず、さまざまなビジネスシーンやキャリア形成にも応用できると感じています。たとえば、相手が求めるものと自分が提供する情報や商品とのズレに着目することで、潜在的なマイナス要因を洗い出すことができます。 ズレはどう見える? そのズレを客観的に捉え、見直すことで、新たな価値創造につながると考えられます。私の担当する業務においても、提示条件によりパートナーを募る際、もし応募が少ない場合は、提示内容が特定の層に偏っていないか、コストと負担のバランスが適正かどうかなど、選ばれない理由を冷静に分析することが必須です。 伝え方を見直す? 相手の求める条件や水準を再確認し、自分たちが提供する価値をより魅力的に伝えることが、実務における「選ばれる仕掛け作り」に直結していると実感しました。今後もこの分析思考を鍛え、実践に生かしていきたいと思います。

データ・アナリティクス入門

誰に聞くかで変わるデータの真実

誰に聞くべき? データ収集の過程では、まず「誰に」聞くかという点が重要だと感じました。意味のある対象から情報を得ることで、収集したデータの信頼性が高まります。 聞き取りはどうする? また、情報の聞き取り方も大切です。アンケートや口頭での聞き取りなど、目的に合った方法を用いることで、精度の高いデータにつながると実感しました。特に、比較するためのデータ収集を怠らないことが求められます。 反論排除は必要? さらに、「反論を排除する情報にまで踏み込む」という視点を、より一層意識すべきだと学びました。これにより、意見の偏りを防ぎ、客観的な分析が可能になると感じています。 仮説の確認は? アクセス解析の業務で日頃から仮説を活用しているとはいえ、今回の学びは仮説を立てる際のポイントを再確認する良い機会となりました。複数の仮説を検討し、決め打ちせずに異なる切り口から網羅性を持たせることが、より説得力のある分析につながると理解しています。 実践は続くの? 今後もこの考え方をしっかりと実践していきたいと思います。

データ・アナリティクス入門

目的意識で切り拓くデータの真実

学びの目的は? 今週の学習で、データ分析は単に数値を集めることではなく、「結果をもとに何を判断するか」を最初に明確にすることが重要だと学びました。目的が曖昧なままでは、比較軸がぶれてしまい、分析が数値の羅列に終始する危険性があると感じます。仮説や目的を起点に、条件の揃ったデータを比較することで、初めて意思決定につながる分析が実現できると理解しました。 改善行動の設計は? また、アプリ開発やマーケティングオートメーションツールを使った1to1配信においても、配信結果を確認する前に「改善すべき行動」や「判断したい内容」を明確にしておくことが大切です。配信の有無やセグメント別など、事前に比較軸を設計した上で効果検証を実施し、その結果を次の施策判断に生かすプロセスを業務に定着させたいと考えています。 分析手法の信頼は? さらに、現状の分析方法が的確であるのか、本来比較すべき指標や切り口は何か、判断を誤らないためにどの点に注意すべきかについて、実務視点での失敗事例も交えながら意見を共有し、議論を深めていきたいと思います。

リーダーシップ・キャリアビジョン入門

自分軸で再発見!働く喜びのヒント

仕事の本音は何? キャリアアンカーを通じ、自分が仕事で何を大切にしているかを理解できたことは、今後のキャリア形成に大きく役立つと感じました。これまで「社会的な役割」や「家族のため」「お金のため」といった理由で業務に取り組んできましたが、実際に自分の喜びがどこにあるのかを問い直すうちに、今までの考え方とは異なる価値に気付くことができ、改めて仕事に向き合う姿勢を見直すきっかけとなりました。 みんなのキャリアは? また、キャリアアンカーについて会社に提言し、皆がどのような目的意識で仕事に取り組んでいるかを把握したいと考えています。さらに、部下がどのような価値観や動機を持って業務に従事しているのかを理解し、それぞれに合わせたコーチングが実現できればと考えています。 可能であれば、アンケートなどを通して社員一人ひとりのキャリアアンカーを確認し、キャリア・サバイバルの検討に役立てたいと思います。私自身も、日々の業務の中で自分の価値観を意識し、部下に対して適切なキャリア・サバイバルの指導ができるよう努めていきたいと考えています。

データ・アナリティクス入門

実務で使える統計の知恵

代表値をどう捉える? 代表値として頭に浮かんだのは平均値と中央値でしたが、実社会では加重平均などさまざまな平均値が活用されている点にあらためて気づき、体系的に学ぶ重要性を感じました。また、標準偏差がばらつきを示すという理解はあったものの、計算方法や2SDルールについては改めて理解を深めることができました。 要因分析をどう活かす? 障害分析の要因分析においては、単に平均値だけを利用するのではなく、取得できる数値情報それぞれの意味を理解した上で、加重平均や幾何平均など適切な手法を用いる必要があると感じました。一方で、分散については現在の業務で具体的にどの局面で利用できるかはまだ明確ではありませんが、基本的な考え方として頭の片隅に置いておくべきだと感じました。 今数値はどう使う? まずは、現在扱っているさまざまな数値を見直し、現状の利用方法が適切かどうかを確認する必要があると考えました。また、まだ導入できていない分散についても、新たに算出することで別の視点が得られる可能性があるため、再度検証する必要があると感じています。

クリティカルシンキング入門

物事の見方を変えるヒントを得たWeek 01

偏った考え方の改善法は? Week 01を通じて、自身の考え方に偏りがあることを痛感しました。物事を考える際、自分本位になることが多く、他の人の話を聞くことで異なる視点に気づかされました。その結果、制約や偏りを起こさないような思考法を学ぶ必要性を強く感じました。 効率的な営業サポートとは? 営業サポートの業務では、窓口になることや指示を出すことが多々あります。その際、相手に伝わりやすく、効率的に返信を促すための論理的な伝え方を習得し、仕事に活かしていきたいと考えています。また、社外の方と連絡を取ることも多いため、自分の会社の当たり前が世間の当たり前ではないことを肝に銘じて、自問自答しながらやり取りを進めていきたいと思います。 会議での発言をどう振り返る? ミーティングや会議の際には、自分の発言が論理的でわかりやすいかを自ら振り返り確認します。相手に指示を出す際は、受け取り側が理解しやすく、簡潔な返信ができるように工夫します。そして、自分の業務効率化だけでなく、受け取り側の効率化や見やすさにも配慮して発信を行います。

クリティカルシンキング入門

問いから始まる勝利のレシピ

問いの大切さは? 問いを出すこと、問いを残すこと、そして問いを共有することの重要性を再確認しました。特に、問いを残すことの重要性については、講義やグループワークを通じて気づくことができました。また、日常的に自分の考えや発言が最初の問いからずれがちであることを改めて意識するようになりました。 業務の課題は何? 私の業務では、クライアントが抱える課題を明確にし、改善事項や改善施策を分析・立案し、実行を支援することが求められます。そのために重要なのは、何を問い(イシュー)とするかということです。そして、問いが明確になったら、その問いから外れないように意識して進めていくことが必要です。 実行手順は正しい? そこで、以下の手順を意識して進めることが重要だと考えています。まず、考え始める前に問いを整理し明確にします。この段階を省略すると、何を考えるべきか迷子になりがちです。次に、問いを残すことを意識しながら進め、答えを出したときにはその答えが問いに沿っているか確認します。そして、理論的に話すことを常に意識することが肝心です。

クリティカルシンキング入門

毎日の振り返りが未来を創る

今までの学びはどう? 今まで学んできた知識を多角的に活かす課題でした。一つ一つの学び自体は決して難しいものではありませんが、実際に身についているかというと、まだもう一歩という印象を受けました。日常的に自分の作成した資料や業務の進め方を振り返り、チェックすることが必要だと感じています。 提案と報告はどうなる? 企画の提案や上司への報告など、あらゆる場面で今回の学びを活用できるはずです。目的や課題を明確にし、相手の立場に立って考える姿勢を、日々の業務の中で当たり前にできるようになりたいと思います。また、重要なポイントはすぐに確認できる場所に貼っておき、仕事中にすぐ参照できるよう工夫したいと考えています。 知識は定着してる? 学習が終わっただけでは知識は定着しません。今後、実際に使う機会を設け、以下の方法で知識の定着に努めます。まず、重要なポイントをすぐ参照できるよう整備すること。次に、動画や資料を3日後、1週間後、1ヶ月後に復習すること。そして、可能な機会には後輩や子供に教えることで、自らの理解を深めたいと思います。

データ・アナリティクス入門

論理的思考で業務の質を向上する方法

感覚から論理へと転換 分析に関連する数字やデータの意味付けについては、これまで感覚的に対応していました。しかし、今回の講義を通じて、論理的に整理する方法を学び、新鮮な驚きを感じました。また、過去にもウェブセミナーに参加したことはありますが、今回の講師の作る良好な雰囲気により、グループ内でも発言しやすく、今後のグループワークにも積極的に参加できそうでありがたかったです。 分析の目的を意識する 普段から財務データを扱い、日々分析に取り組んでいますが、「この分析の趣旨や目的は何か」という視点を常に意識しながら業務を遂行しようと考え直しました。また、分析に時間をかけすぎないよう心掛け、分析を基に仮説を立て、次の行動へと移行し、新しいデータの取得を目指したいと思います。 学びをどう業務に活かす? これらの学びや気づきを、私自身の業務に留めず、部下や後輩の指導にも活かしていきたいと考えています。分析に限らず、業務を指示する際には、その業務の趣旨や目的、共に目指すゴールを確認することで、業務の質とスピードを向上させたいです。

クリティカルシンキング入門

データ分析で見えた成功と失敗の違い

真因分析の切り口とは? 真因を分析するためには、複数の切り口で分析する必要があります。切り口は、仮説を検証するために適した分け方であるかを事前に確認し、単純に分けるのではなく、目的を明確に設定しなければなりません。仮に仮説が立証できなくても、それは失敗ではなく、仮説が間違っていたことを発見できたと前向きに考えるべきです。 業務の違いはどこに? 私は日常業務で、結果が出ている取引先と結果が出ていない取引先の違いを分析しています。これまでとは異なる切り口を増やして分析を行いたいと考えています。例えば、店主の年齢、社員数、業務品質の良し悪し、取引高の規模といった要素で分析すると、効率的な行動や指導方法に繋がるかもしれません。 効率的な行動を導く分析手法は? 直近のデータを元に、自走化のレベル分け、販売率、顧客数の規模別に分析し、更に年齢、会社人数、業務品質別に分けて分析を行いました。結果が出ていない層に対しては、一定期間共通の働きかけを実施し、その変化を分析することで、次回の検証に繋げていきたいと考えています。

クリティカルシンキング入門

視点を広げて分析力を磨く旅

本当に多視点で見る? 物事を一つの観点からではなく、複数の視点で細かく分解することの重要性に気づきました。これまで、全体像を考慮せずに思いついたまま分析を進める傾向があったのではないかと反省しています。全体を把握しているつもりでしたが、偏った見方や分析をしていたことに改めて気づくことができました。 自分で組み立てる理由は? 私は文瀬を仕事にしており、これまでは上司の指示に従って分析することが多かったです。しかし、これからは自分自身でしっかりと考え、順序立てて分析をすることを意識して、日々の業務に取り組んでいきたいと思います。特に、分析を始める際には全体像を整理することからスタートするよう心掛け、それを仕事に反映していきたいです。 再整理の意義はある? 分析が必要な際は、まず全体像を整理し、その内容を上司と共有して論点の見落としや追加がないか確認します。分析を進める中で新たな着眼点が見えた時は、それを含めた全体像の整理を再び行います。これにより、途中で脱線しないようにしっかりと枠組みを持って進めていきます。

クリティカルシンキング入門

問いが未来を切り拓く

課題は正しく見えてる? やみくもに打ち手を考えてしまいがちだった自分に、今回の学びを通じて気づかされました。まずは、イシュー―つまり課題―を明確に特定し、その課題が問いの形になっているかどうか確認することの重要性を学びました。問いを意識することで、思考が発散しがちな状況に戻るべき方向性を示してくれる点も印象的でした。また、誰の何を解決するのか、そしてその問題が今まさに取り組むべきものなのかを意識する大切さも再認識しました。 業務で問いは整ってる? この学びを自身の業務に活かすため、提案資料や競合調査資料の作成に取り組む際には、まず迅速に問いを設定することを実践しています。こうすることで、論点がズレたり思考が拡散してしまうのを防ぐことができました。また、相手の状況や立場を考慮し、常にその時点で適切な問いの設定になっているかを客観的に評価するよう努めています。 チームで問い共有済? さらに、チーム内では問いの共有を行い、複数の視点や広い視野を取り入れることで、問いの解像度をより高める取り組みを推進しています。
AIコーチング導線バナー

「確認 × 業務」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right